IPUMS PMA LONGITUIDNAL ANALYSIS GUIDE For R Users

November 2022

BILL& MELINDA GATES foundation

CONTENTS

Preface	V
1 Introduction	1
1.1 IPUMS PMA data in R	2
1.2 PMA Background	
1.3 Sampling	6
1.4 Inclusion Criteria for Analysis	
1.5 Survey Design Elements	
1.5.1 Set survey design	
1.5.2 Sample strata for DRC	
2 Longitudinal Data Extracts	
2.1 Sample Selection	
2.2 Variable Selection	
2.2.1 Codes	
2.2.2 Variable Description	
2.2.3 Comparability Notes	
2.2.4 Sample Universe	
2.2.5 Availability Across Samples	
2.2.6 Questionnaire Text	
2.2.7 Checkout	
2.3 Data for R Users	
2.3.1 Select a Fixed-width File	
2.3.2 Download	
2.4 Long Data Structure	
2.5 Wide Data Structure	
2.6 Which format is best for me?	47
3 Panel Membership	49
3.1 Chapter Setup	51
3.2 Phase 1	55
3.2.1 Household Questionnaire	.56
3.2.2 Female Questionnaire	.59
3.3 Phase 2	
3.3.1 Household Questionnaire	
3.3.2 Female Questionnaire	
3.4 Summary	
4 Family Planning Indicators	
4.1 Chapter Setup	
4.2 Significance Test	
4.3 Data Visualization	
4.4 Contraceptive Use or Non-Use	
4.4 Contraceptive Ose of Non Ose	
4.6 Contraceptive Dynamics by Subgroup	
4.6.1 Age	00.
4.6.3 Marital status	.90

4.6.4	4 Parity	 92
4.7 Out	tcomes for Phase 1 Non-users	 94
4.7.1	Unmet need	 95
4.7.2	Partner support	 97
4.7.3	Intentions	 99
4.8 Lim	nitations	 101
5 Advanc	ced Data Visualization	 102
5.1 Cha	apter Setup	 103
5.2 Gro	ouped Bar Charts	 105
5.3 Hea	atmaps	 107
5.4 Allu	uvial plots	 115
6 Contra	ceptive Calendar	 120
6.1 Cha	apter Setup	 121
6.2 Cer	ntury Month Codes (CMC)	 126
6.3 Cal	lendar Length	 128
6.4 For	rmatting Calendar Strings	 131
6.4.1	Merge Phases	 132
6.4.2	2 Merge Countries	 134
6.4.3	Blank Strings	 136
6.4.4	4 Split Months into Columns	 142
6.4.5	5 One Row per Month	 144
	alysis	
	Right-censoring	
	2 Survival Models	
6.5.3	B Data Visualization	 156

PREFACE

This guide was commissioned and funded by the Family Planning Team at the Bill & Melinda Gates Foundation. The examples here are directly based on the companion IPUMS PMA data analysis blog, with R examples developed by Matt Gunther and IPUMS PMA documentation by Devon Kristiansen under the direction of Kathryn Grace, PhD and Elizabeth Heger Boyle, PhD at IPUMS PMA, University of Minnesota. The Stata version and statistical consulting were provided by Mia Yu and Dale Rhoda at Biostat Global Consulting. These authors are grateful for helpful reviews & comments from Philip Anglewicz, PhD; Linnea Zimmerman, PhD, and Aisha Siewe at Johns Hopkins University. Thanks also to Caitlin Clary, PhD, Mary Kay Trimner, Nina Brooks, PhD, and Finn Roberts for code contributions and review.

Suggested Citation

Matt Gunther, Mia Yu, Dale Rhoda, and Devon Kristiansen. *IPUMS PMA Longitudinal Analysis Guide for R Users* (November 2022). Minneapolis, MN: IPUMS. pma.ipums.org

Source Code

The code provided in this manual is open source (© MPL 2.0). This manual was constructed from R Markdown files with the pagedown package for R.¹ These files are available on our GitHub repository, where you will also find .r and .do files containing the code shown in this manual.

The IPUMS PMA data files referenced in this manual are also available at no cost, but you must register and adhere to terms of use at pma.ipums.org/register. Dataset access is granted only for non-commercial purposes. Users must register an account with IPUMS, request access to data from particular countries, and describe their intended use for the data. Users who have been approved for access to certain countries may submit justification to expand their access to other countries.

La version française du formulaire d'inscription

Revision History

Revisions to this manual are listed by date and accompanied by comments here. **Questions and suggested changes are welcome!** Please submit requests to our Issues forum on GitHub.

¹pagedown © Xie, Yihui et al. (MIT)

Hyperlinks

Hyperlinks to IPUMS PMA variable documentation, relevant R and Stata documentation, and various other resources are highlighted in pink throughout this manual. If the reader prefers a printed version, they are recommended to compile the manual from source files on our GitHub repository, changing the pagedown option described here. **Warning:** this will add additional footnotes to the document, and may impact pagination.

Acronyms

- BMGF Bill & Melinda Gates Foundation
- CI confidence interval
- CMC century month code
- CONSORT Consolidated Standards of Reporting Trials
- CRAN The Comprehensive R Archive Network (statistical software)
- CSV comma-separated values file format
- DEFF design effect
- DEFT root design effect (square root of DEFF)
- DRC Democratic Republic of Congo
- EA enumeration area
- FP family planning
- FP2020 Family Planning 2020
- FP2030 Family Planning 2030
- GPS global positioning system
- IPUMS Integrated Public Use Microdata Series
- ISO International Organization for Standardization
- IUD intrauterine device
- LAM lactational amenorrhea method of contraception
- NA not available (R notation for a missing data element)
- NIU not in universe
- PMA Performance Monitoring for Action
- PPS probability proportional to size
- SAS statistical analysis system (statistical software)
- SPSS statistical package for social sciences (statistical software)

1 INTRODUCTION

Performance Monitoring for Action (PMA) uses innovative mobile technology to support low-cost, rapid-turnaround surveys that monitor key health and development indicators.

PMA surveys collect longitudinal data throughout a country at the household and health facility levels by female data collectors, known as resident enumerators, using mobile phones. The survey collects information from the same women and households over time for regular tracking of progress and for understanding the drivers of contraceptive use dynamics. The data are rapidly validated, aggregated, and prepared into tables and graphs, making results quickly available to stakeholders. PMA surveys can be integrated into national monitoring and evaluation systems using a low-cost, rapid-turnaround survey platform that can be adapted and used for various health data needs.

The PMA project is implemented by local partner universities and research organizations who train and deploy the cadres of female resident enumerators.

The purpose of this manual is to provide guidance on the analysis of **harmonized longitudinal data** for a panel of women age 15-49 surveyed by PMA and published in partnership with IPUMS PMA. IPUMS provides census and survey products from around the world in an integrated format, making it easy to compare data from multiple countries. IPUMS PMA data are available free of charge, subject to terms and conditions: please register here to request access to the data featured in this guide.²

PMA has also published a guide to **cross-sectional** analysis in both English and French.

This manual provides reproducible coding examples in the statistical programming language R. Each chapter also appears as a post on the IPUMS PMA data analysis blog, where you'll find new content posted every two weeks.

Stata users: a companion manual for IPUMS PMA longitudinal analysis is also available with coding examples written in Stata.

²PMA data for individual countries is also available at no cost from pmadata.org. Please note that the variable names, value labels, numeric codes, and other metadata featured in this guide have been altered by IPUMS PMA to facilitate comparison across countries.

1.1 IPUMS PMA DATA IN R

The first two chapters of this manual introduce new users to PMA longitudinal data and the IPUMS PMA website, respectively. After demonstrating how to obtain an IPUMS PMA data extract, the remaining chapters feature extensive data analysis examples written in R.

To follow along, you'll need to download the appropriate version of R for your computer's operating system at r-project.org. R is available at no cost and it runs on Windows, MacOS, and a wide variety of UNIX platforms. We also recommend downloading a free copy of RStudio, an integrated development environment (IDE) designed to make your experience with R much easier.

Individual chapters may introduce one or two **R packages** that provide helpful functions for longitudinal survey analysis, in particular. Two packages we feature in *every* chapter are ipumsr and tidyverse. You can install these and other packages featured in this quide like so:

```
install.packages("ipumsr")
install.packages("tidyverse")
```

The ipumsr package is designed to help R users import and explore data extracts downloaded from IPUMS. As we'll see, categorical variables from IPUMS require additional tools because they appear as **labelled integers** represented in R by a number and a label like this:

срі	C.	sented in it by a number and	a labe
#	А	tibble: 4×2	
		DUNTRY	n
	<i< td=""><td>.nt+lbl></td><td><int></int></td></i<>	.nt+lbl>	<int></int>
1	1	[Burkina Faso]	8257
2	2	[Congo, Democratic Republic]	6090
3	7	[Kenya]	12605
4	9	[Nigeria]	3225

× 47,	P
© IPUMS	
(MPL-2.0)	

The tidyverse is actually a collection of packages developed in-part by contributors at RStudio. These include:

- ggplot2 for data visualization
- dplyr for data manipulation
- tidyr for data tidying
- readr for data import
- purrr for functional programming
- tibble for tibbles, a modern re-imagining of dataframes
- stringr for strings
- forcats for factors

© RStudio. Inc. (MIT)

Featured Data Extracts

In subsequent chapters, we will include instructions for requesting data extracts from IPUMS PMA that are identical those used in our analysis. These data are available at no cost, but you must register and adhere to terms of use at pma.ipums.org/register.

Each data extract that you request from IPUMS PMA is named with a unique number. For example, your very first extract will include a pair of files named pma_00001.dat.gz and pma_00001.xml. In this guide we reference seven data extracts, but your own file names may vary depending on the number of IPUMS PMA extracts you have requested previously.

- pma_00001.dat.gz and pma_00001.xml
- pma_00002.dat.gz and pma_00002.xml
- pma_00003.dat.gz and pma_00003.xml
- pma_00004.dat.gz and pma_00004.xml
- pma_00005.dat.gz and pma_00005.xml
- pma_00006.dat.gz and pma_00006.xml
- pma_00007.dat.gz and pma_00007.xml

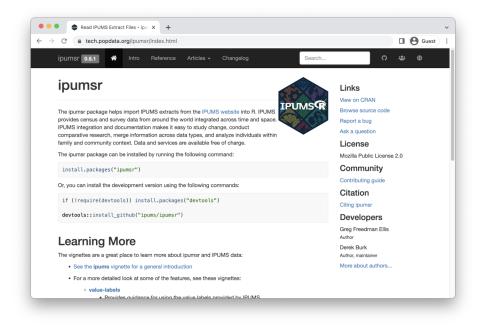
As you follow along with each chapter, save each data extract in folder called "data" within your R working directory.

Working Directory

R users can identify their current working directory with the function getwd and change it with setwd. Files within the working directory can be found by R using the **relative path** from this location. For example, we'll load our first data extract into R *assuming* that you have placed it in a folder called "data" within your R working directory.

```
dat <- read_ipums_micro(
    ddi = "data/pma_00001.xml",
    data = "data/pma_00001.dat.gz"
)</pre>
```

Rstudio users can find all of the code demonstrated in this guide in this RStudio Project.³ Simply open the file pma-longitudinal.Rproj and navigate to the RMarkdown file r_users.Rmd in RStudio - no need to set your own working directory!


³Lean more about RStudio Projects here.

Learning More

This manual focuses exclusively on longitudinal family planning data from IPUMS PMA, but the companion data analysis blog covers a wide range of topics like:

- A free online course for beginners
- New data announcements
- Data cleaning and reformatting
- Data analysis and visualization
- Spatial analysis
- Guides to PMA Service Delivery Point & Client Exit Interview data

Beyond the blog, it's important to know where to find **instructions and examples** for the R packages featured in this guide. Nearly all of these packages have a dedicated website with a homepage, reference page (documentation for individual functions), collection of articles (for general instructions), and change-log (for news about updates). The ipumsr page is a great place to start:

Finally, if you're looking for a more general introduction to R, we strongly recommend the following **free resources**:

- R for Data Science for beginners
- Advanced R for a deeper dive
- RSpatial for analysis with spatial data
- ggplot2 for data visualization
- R Markdown: The Definitive Guide for producing annotated code, word documents, presentations, web pages, and more
- R-bloggers for regular news and tutorials

1.2 PMA BACKGROUND

Dating back to 2013, the original PMA survey design included high-frequency, **cross-sectional** samples of women and service delivery points collected from eleven countries participating in Family Planning 2020 (FP2020) - a global partnership that supports the rights of women and girls to decide for themselves whether, when, and how many children they want to have. These surveys were designed to monitor annual progress towards FP2020 goals via population-level estimates for several core indicators.

Beginning in 2019, PMA surveys were redesigned under a renewed partnership called Family Planning 2030 (FP2030). These new surveys have been refocused on reproductive and sexual health indicators, and they feature a **longitudinal panel** of women of childbearing age. This design will allow researchers to measure contraceptive dynamics and changes in women's fertility intentions over a **three year period** via annual in-person interviews.⁴

Questions on the redesigned survey cover topics like:

- awareness, perception, knowledge, and use of contraceptive methods
- perceived quality and side effects of contraceptive methods among current users
- birth history and fertility intentions
- aspects of health service provision
- domains of empowerment

⁴In addition to these three in-person surveys, PMA also conducted telephone interviews with panel members focused on emerging issues related to the COVID-19 pandemic in 2020. These telephone surveys are already available for several countries - the IPUMS PMA blog series on PMA COVID-19 surveys covers this topic in detail.

1.3 SAMPLING

PMA panel data includes a mixture of **nationally representative** and **sub-nationally representative** samples. The panel study consists of three data collection phases, each spaced one year apart.

As of this writing, IPUMS PMA has released data from the first *two* phases for four countries where Phase 1 data collection began in 2019; IPUMS PMA has released data from only the *first* phase for three countries where Phase 1 data collection began in August or September 2020. Phase 3 data collection and processing is currently underway.

			Now Available from IPUMS PM		
Sample	Phase 1 Data Collection*	Phase 1	Phase 2	Phase 3	
Burkina Faso	Dec 2019 - Mar 2020	Х	Х		
Cote d'Ivoire	Sep 2020 - Dec 2020	Х			
DRC - Kinshasa	Dec 2019 - Feb 2020	Х	х		
DRC - Kongo Central	Dec 2019 - Feb 2020	Х	х		
India - Rajasthan	Aug 2020 - Oct 2020	Х			
Kenya	Nov 2019 - Dec 2019	Х	х		
Nigeria - Kano	Dec 2019 - Jan 2020	Х	х		
Nigeria - Lagos	Dec 2019 - Jan 2020	Х	Х		
Uganda	Sep 2020 - Oct 2020	Х			
k					

*Each data collection phase is spaced one year apart

PMA uses a multi-stage clustered sample design, with stratification at the urban-rural level or by sub-region. Sample clusters - called enumeration areas (EAs) – are provided by the national statistics agency in each country.⁵ These EAs are sampled using a *probability proportional to size* (PPS) method relative to the population distribution in each stratum.

Resident enumerators are women over age 21 living in (or near) each EA who hold at least a high school diploma.

⁵Displaced GPS coordinates for the centroid of each EA are available for most samples by request from PMA. IPUMS PMA provides shapefiles for PMA countries here.

At Phase 1, 35 household dwellings were selected at random within each EA. Resident enumerators visited each dwelling and invited one household member to complete a Household Questionnaire⁶ that includes a census of all household members and visitors who stayed there during the night before the interview. Female household members and visitors aged 15-49 were then invited to complete a subsequent Phase 1 Female Questionnaire.⁷

One year later, resident enumerators visited the same dwellings and administered a Phase 2 Household Questionnaire. A panel member in Phase 2 is any woman still age 15-49 who could be reached for a second Female Questionnaire, either because:

- she still lived there, or
- she had moved elsewhere within the study area,⁸ but at least one member of the Phase 1 household remained and could help resident enumerators locate her new dwelling.⁹

Additionally, resident enumerators administered the Phase 2 Female Questionnaire to *new* women in sampled households who:

- reached age 15 after Phase 1
- joined the household after Phase 1
- declined the Female Questionnaire at Phase 1, but agreed to complete it at Phase 2

SAMEDWELLING indicates whether a

Phase 2 female respondent resided in her Phase 1 dwelling or a new one.

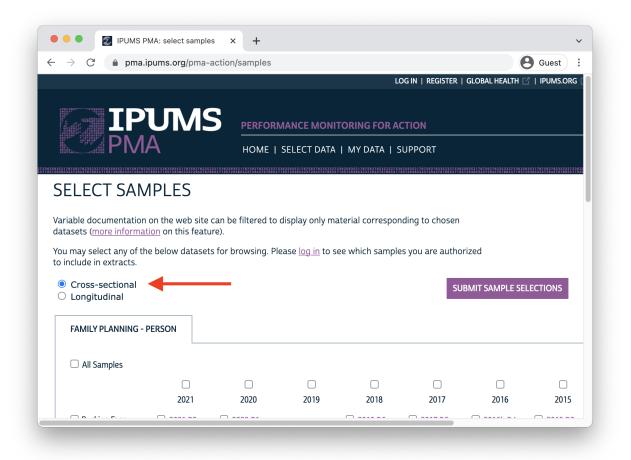
PANELWOMAN indicates whether a Phase 2 household member completed the Phase 1 Female Questionnaire.

⁶Questionnaires administered in each country may vary from this **Core Household Questionnaire** - click here for details.

⁷Questionnaires administered in each country may vary from this **Core Female Questionnaire** - click here for details.

⁸The "study area" is area within which resident enumerators should attempt to find panel women that have moved out of their Phase 1 dwelling. This may extend beyond the woman's original EA as determined by in-country administrators - see PMA Phase 2 and Phase 3 Survey Protocol for details.

⁹In cases where no Phase 1 household members remained in the dwelling at Phase 2, women from the household are considered **lost to follow-up**. Chapter 3 covers this topic in detail.


When you select the new **Longitudinal** sample option from IPUMS PMA, you'll be able to include responses from every available phase of the study. These samples are available in either **Long** format (responses from each phase will be organized in separate rows) or **Wide** format (responses from each phase will be organized in columns).

IPUMS PMA: selec	t samples X	+
\leftrightarrow \rightarrow C \bullet pma.ipums.or	g/pma-action/sa	amples Ouest
IPU PMA		PERFORMANCE MONITORING FOR ACTION HOME SELECT DATA MY DATA SUPPORT
87 4 7 5 4 5 7 4 7 4 7 7 7 7 9 7 5 7 1 7 7 7 4 7 3 4 5 5 4 3 7 4 7 4 7 4 7 4 7 5 5 5 7 1 7 7 7 4 7 5 7 5 7 1 7 7		
SELECT SAMPLE	S	
datasets (more information on the	nis feature).	iltered to display only material corresponding to chosen wsing. Please <u>log in</u> to see which samples you are authorized
datasets (more information on the	nis feature).	
datasets (more information on the Vou may select any of the below to include in extracts.	nis feature).	
datasets (more information on the value of the below to include in extracts.	nis feature).	wsing. Please <u>log in</u> to see which samples you are authorized
datasets (more information on the You may select any of the below to include in extracts. O Cross-sectional © Longitudinal	nis feature).	wsing. Please <u>log in</u> to see which samples you are authorized
datasets (more information on the You may select any of the below to include in extracts. Cross-sectional Longitudinal Long	nis feature).	wsing. Please <u>log in</u> to see which samples you are authorized
datasets (more information on the You may select any of the below to include in extracts. Cross-sectional Longitudinal Cung the Wide the Wide the Current sectors of the below to include in extracts.	nis feature).	wsing. Please <u>log in</u> to see which samples you are authorized
datasets (more information on the You may select any of the below to include in extracts. Cross-sectional Longitudinal Cung the Wide the Wide the Current sectors of the below to include in extracts.	nis feature).	wsing. Please <u>log in</u> to see which samples you are authorized
datasets (more information on the You may select any of the below to include in extracts. Cross-sectional Longitudinal Under Cross FAMILY PLANNING - PERSON	nis feature).	wsing. Please <u>log in</u> to see which samples you are authorized

In addition to following up with women in the panel over time, PMA also adjusted sampling so that a cross-sectional sample could be produced concurrently with each data collection phase. These samples mainly overlap with the data you'll obtain for a particular phase in the longitudinal sample, except that replacement households were drawn from each EA where more than 10% of households from the previous phase were no longer there. Conversely, panel members who were located in a new dwelling at Phase 2 will not be represented in the crosssectional sample drawn from that EA. These adjustments ensure that population-level indicators may be derived from cross-sectional samples in a given year, even if panel members move or are lost to follow-up.

CROSS_SECTION indicates whether a household member in a longitudinal sample is also included in the cross-sectional sample for a given year (every person in a cross-sectional sample is included in the longitudinal sample).

You'll find PMA cross-sectional samples dating back to 2013 if you select the **Cross-sectional** sample option from IPUMS PMA.

1.4 INCLUSION CRITERIA FOR ANALYSIS

Several chapters in this manual feature code you can use to reproduce key indicators included in the **PMA Longitudinal Brief** for each sample. In many cases, you'll find separate reports available in English and French, and for both national and sub-national summaries. For reference, here are the highest-level population summaries available in English for each sample where Phase 2 IPUMS PMA data is currently available:

- Burkina Faso
- DRC Kinshasa
- DRC Kongo Central
- Kenya
- Nigeria Kano
- Nigeria Lagos

Panel data in these reports is limited to the *de facto* population of women who completed the Female Questionnaire in both Phase 1 and Phase 2. This includes women who slept in the household during the night before the interview for the Household Questionnaire. The *de jure* population includes women who are usual household members, but who slept elsewhere that night. In order to reproduce the findings from PMA reports, we'll remove *de jure* cases recorded in the variable RESIDENT.

For example, let's consider a **Wide** format data extract containing Phase 1 and Phase 2 respondents to the Female Questionnaire from Burkina Faso. We've downloaded such an extract and placed it in the "data" subfolder of our R working directory. We'll load ipumsr and tidyverse together with our extract.

We will demonstrate how to request and download an IPUMS PMA data extract in Chapter 2.

```
library(ipumsr)
library(tidyverse)

dat <- read_ipums_micro(
    ddi = "data/pma_00001.xml",
    data = "data/pma_00001.dat.gz"
)</pre>
```

In a **Wide** format data extract, a numeric suffix indicates the data collection phase associated with each variable. So, the you'll find the the number of women who slept in the household before the Household Questionnaire for each phase reported in RESIDENT_1 and RESIDENT_2.

This extract includes 174 women who are not members of the *de facto* population because they did not sleep in the sampled household during the night before the Phase 1 interview:

```
dat %>% count(RESIDENT_1)
```

# A tibble: 3 × 2	
RESIDENT_1	n
<int+lbl></int+lbl>	<int></int>
1 11 [Visitor, slept in hh last night]	106
2 21 [Usual member, did not sleep in hh last night]	174
3 22 [Usual member, slept in hh last night]	6510

The extract also includes 230 women who are not members of the *de facto* population because they did not sleep in the sampled household during the night before the Phase 2 interview:

```
dat %>% count(RESIDENT_2)
```

# A tibble: 5 × 2	
RESIDENT_2	n
<int+lbl></int+lbl>	<int></int>
1 11 [Visitor, slept in hh last night]	74
2 21 [Usual member, did not sleep in hh last night]	230
3 22 [Usual member, slept in hh last night]	5993
4 31 [Slept in hh last night, no response if usually lives in hh]	1
5 NA	492

Moreover, there are 492 NA values in RESIDENT_2 representing women who were **lost to follow-up** after Phase 1. We will explain **loss to follow-up** in detail in Chapter 3.

The *de facto* population is represented in codes 11 and 22 in both of these variables. We'll use filter to include only those cases.

```
defacto <- dat %>% filter(RESIDENT_1 %in% c(11, 22) & RESIDENT_2 %in% c(11, 22))
```

defacto %>% count(RESIDENT_1, RESIDENT_2)

```
# A tibble: 4 × 3
RESIDENT_1 RESIDENT_2 n
<int+lbl> <int+lbl> <int+lbl> <int+lbl> 0
1 11 [Visitor, slept in hh last night] 11 [Visitor, slept in hh last night] 56
2 11 [Visitor, slept in hh last night] 22 [Usual member, slept in hh last night] 17
4 22 [Usual member, slept in hh last night] 22 [Usual member, slept in hh last night] 5855
```

Additionally, PMA reports only include women who completed (or partially completed) both Female Questionnaires. This information is reported in RESULTFQ. In our **Wide** extract, this information appears in RESULTFQ_1 and RESULTFQ_2: if you select the **Female Respondents** option at checkout, only women who completed (or partially completed) the Phase 1 Female Questionnaire will be included in your extract.

	MS PMA: select samples × +	
→ C ⁱ ^ˆ pr	ma.ipums.org/pma-action/samples Q Guest)
	LOG IN REGISTER GLOBAL HEALTH 📑 IPUMS.ORG 📑	
	UMS PERFORMANCE MONITORING FOR ACTION	
PMA	HOME SELECT DATA MY DATA SUPPORT	
521767592762352327536259352176759276235232 185323729457676953719572938532372945767895		2593521 729385
SELECT SAMP	PLES	
ariable documentation on	n the web site can be filtered to display only material corresponding to chosen	
atasets (more information		
ou may select any of the b include in extracts.	below datasets for browsing. Please log in to see which samples you are authorized	
Longitudinal	SUBMIT SAMPLE SELECTIONS	
 Long 1 Wide 1 		
FAMILY PLANNING - PER	RSON	
Documentation		
All Samples (wide)		
Burkina Faso	□ <u>2020 - 2021</u>	
Congo (Democratic R	Republic) 🗆 <u>2019b - 2020b</u> 🗊	
	2019a - 2020a	
🗆 Kenya	□ <u>2019 - 2020</u>	
🗆 Nigeria	□ <u>2019b - 2020b</u> ①	
	2019a - 2020a	
Sample Membe	ers	
 Female Respond Female Respond 	dents	
 Female Respond Female Respond Female Respond 	dents dents and Household Members dents and Female Non-respondents	
 Female Respond Female Respond Female Respond 	dents	
 Female Respond Female Respond Female Respond 	dents dents and Household Members dents and Female Non-respondents ondents and Non-respondents to Household and Female Questionnaires)	
 Female Respond Female Respond Female Respond 	dents dents and Household Members dents and Female Non-respondents	
 Female Respond Female Respond Female Respond 	dents dents and Household Members dents and Female Non-respondents ondents and Non-respondents to Household and Female Questionnaires)	

We'll further restrict our sample by selecting only cases where RESULTFQ_2 shows that the woman also completed the Phase 2 questionnaire. Notice that, in addition to each of the values 1 through 10, there are several **non-response codes** numbered 90 through 99. You'll see similar values repeated across all IPUMS PMA variables, except that they will be left-padded to match the maximum width of a particular variable (e.g. 9999 is used for INTFQYEAR, which represents a 4-digit year for the Female Interview).

```
dat %>% count(RESULTFQ_2)
```

# A tibble: 11 × 2		
RESULTFQ_2	n	
<int+lbl></int+lbl>	<int></int>	
1 1 [Completed]	5491	
2 2 [Not at home]	78	
3 3 [Postponed]	22	
4 4 [Refused]	66	
5 5 [Partly completed]	12	
6 7 [Respondent moved]	15	
7 10 [Incapacitated]	19	
8 95 [Not interviewed (female questionnaire)]	4	
9 96 [Not interviewed (household questionnaire)]	192	
10 99 [NIU (not in universe)]	399	
11 NA	492	

Possible non-response codes include:

- 95 Not interviewed (female questionnaire)
- 96 Not interviewed (household questionnaire)
- 97 Don't know
- 98 No response or missing
- 99 NIU (not in universe)

The value NA in an IPUMS PMA extract indicates that a particular variable is not provided for a selected sample. In a **Wide** extract, it may also signify that a particular person was not included in the data from a particular phase. Here, an NA appearing in RESULTFQ_2 indicates that a Female Respondent from Phase 1 was not found in Phase 2.

You can drop incomplete Phase 2 female responses as follows:

Generally, we will combine both filtering steps together in a single function like so:

```
dat <- dat %>%
filter(
    RESIDENT_1 %in% c(11, 22) & RESIDENT_2 %in% c(11, 22),
    RESULTFQ_2 == 1
)
```

In subsequent analyses, we'll use the remaining cases to show how PMA generates key indicators for **contraceptive use status** and **family planning intentions and outcomes**. The summary report for each country includes measures dis-aggregated by demographic variables like:

- MARSTAT marital status
- EDUCATT and EDUCATTGEN highest attended level of education¹⁰
- AGE age
- WEALTHQ and WEALTHT household wealth quintile or tertile¹¹
- URBAN and SUBNATIONAL geographic location¹²

¹⁰Levels in EDUCATT may vary by country; EDUCATTGEN recodes country-specific levels in four general categories.

¹¹Households are divided into quintiles/tertiles relative to the distribution of an asset score weighted for all sampled households. For subnationally-representative samples (DRC and Nigeria), separate wealth distributions are calculated for each sampled region.

¹²SUBNATIONAL includes sub-national regions for all sampled countries; country-specific variables are also available on the household - geography page.

1.5 SURVEY DESIGN ELEMENTS

Throughout this guide, we'll demonstrate how to incorporate PMA sampling weights and information about its stratified cluster sampling procedure into your analysis. This section describes how to use survey weights, cluster IDs, and sample strata in R.

Whether you intend to work with a new **Longitudinal** or **Cross-sectional** data extract, you'll find the same set of sampling weights available for all PMA Family Planning surveys dating back to 2013:

- HQWEIGHT can be used to generate cross-sectional population estimates from questions on the Household Questionnaire.¹⁴
- FQWEIGHT can be used to to generate cross-sectional population estimates from guestions on the Female Questionnaire.¹⁵
- EAWEIGHT can be used to compare the selection probability of a particular household with that of its EA.

A fourth Family Planning survey weight, POPWT, is currently available only for **Cross**sectional data extracts.¹³

Additionally, PMA created a new weight, PANELWEIGHT, which should be used in longitudinal analyses spanning multiple phases, as it adjusts for loss to follow-up. PANELWEIGHT is available only for **Longitudinal** data extracts.

PMA sample clusters are identified by the variable EAID, while sample strata are identified by STRATA. We'll demonstrate how to use each of these survey design elements in R below.

¹³POPWT can be used to estimate population-level *counts* - click here or view this video for details.

¹⁴HQWEIGHT reflects the calculated selection probability for a household in an EA, normalized at the population-level. Users intending to estimate population-level indicators for *households* should restrict their sample to one person per household via LINENO - see household weighting guide for details.

¹⁵FQWEIGHT adjusts HQWEIGHT for female non-response within the EA, normalized at the population-level - see female weighting guide for details.

1.5.1 Set survey design

Throughout this guide, we'll use tools from the srvyr package to incorporate survey design elements into our analyses.¹⁶ You can install or update srvyr from CRAN like so:

```
install.packages("srvyr")
```

Load srvyr for use in an R session with:

library(srvyr)

Let's return to the **Wide** data extract described in the previous section, which includes Phase 1 and Phase 2 **Female Respondents** from Burkina Faso. In the following example, we'll show how to use IPUMS PMA survey design elements to estimate the proportion of reproductive age women in Burkina Faso who were using contraception at the time of data collection for both Phase 1 and Phase 2. In a **Cross-sectional** or **Long** format longitudinal extract, you'd find this information in the variable CP. In the **Wide** extract featured here, you'll find it in CP_1 for Phase 1, and in CP_2 for Phase 2.

Here is how to count the *unweighted* number of sampled women using and not using contraception in both phases. (We drop 5 cases coded 99 for "NIU (not in universe)" in Phase 1).

```
dat <- dat %>% filter(CP_1 < 90 & CP_2 < 90)
dat %>% count(CP_1, CP_2)
```

A tibble: 4 × 3
CP_1 CP_2 n
<int+lbb <int

¹⁶The srvyr package is a tidyverse implementation of the popular survey package for R, authored by Dr. Thomas Lumley. For thorough discussion of the types of weights available in both R and Stata, we recommend this blog post by Dr. Lumley.

To estimate a population percentage, we'll need to tell srvyr that we are working with a sample survey dataset and specify the IPUMS PMA survey design elements. This is accomplished with as_survey_design: we use PANELWEIGHT as the sampling weight. We also use EAID_1 to id the sample clusters,¹⁷ and STRATA_1 to represent sample strata.¹⁸

Summary functions like survey_mean use information from as_survey_design to derive weighted population estimates with cluster-adjusted standard errors. The argument vartype = "ci" reports a cluster-robust 95% confidence interval,¹⁹ while prop = TRUE and prop_method = "logit" ensure that no estimated proportion includes values beyond 0% and 100%.²⁰

```
dat %>%
    as_survey_design(
        weight = PANELWEIGHT,
        id = EAID_1,
        strata = STRATA_1
    ) %>%
    summarise(
        survey_mean(
            CP_1 * CP_2,
            vartype = "ci",
            proportion = TRUE,
            prop_method = "logit"
        )
    )
# A tibble: 1 × 3
```

coef shows the estimated population proportion

_low and _upp show the lower and upper bounds of a 95% confidence interval

A tibble: 1 × 3
 coef `_low` `_upp`
 <dbl> <dbl> <dbl>
1 0.188 0.164 0.214

Using the survey design information for this sample, we estimate that about 18.8% of all reproductive age women in Burkina Faso were using contraception at the time both Phase 1 and Phase 2 data were collected. We're 95% certain that this value falls between 16.4% and 21.4%.

¹⁷As we'll see in Chapter 3, women are considered **lost to follow-up** if they moved outside the study area after Phase 1. Therefore, EAID_1 and EAID_2 are identical for all panel members: you can use either one to identify sample clusters.

¹⁸As with EAID, you may use either STRATA_1 or STRATA_2 if your analysis is restricted to panel members

¹⁹The confidence level in survey_mean can be adjusted with level (e.g. level = 0.99)

²⁰See svyciprop for a complete list of available adjustment methods.

1.5.2 Sample strata for DRC

Importantly, the variable STRATA is *not available* for samples collected from DRC - Kinshasa or DRC - Kongo Central. If your extract includes any DRC sample, you'll need to amend this variable to include one unique numeric code for each of those regions.

For example, let's look at a different **Wide** extract, dat2, containing all of the samples included in this data release.

```
dat2 <- read_ipums_micro(
    ddi = "data/pma_00002.xml",
    data = "data/pma_00002.dat.gz"
)
dat2 <- dat2 %>%
    filter(
        RESIDENT_1 %in% c(11, 22) & RESIDENT_2 %in% c(11, 22),
        RESULTFQ_2 == 1,
        CP_1 < 90 & CP_2 < 90
    )
```

Notice that STRATA_1 lists the sample strata for every COUNTRY *except* for DRC, where you see the value NA.

```
dat2 %>% filter(is.na(STRATA_1)) %>% count(COUNTRY, STRATA_1)
```

# A tibble: 1 × 3	
COUNTRY	STRATA_1 n
<int+lbl></int+lbl>	<int+lbl> <int></int></int+lbl>
1 2 [Congo, Democratic Republic]	NA 3478

Now let's see what happens when we try to produce population-level estimates with STRATA_1:

```
dat2 %>%
  as_survey_design(weight = PANELWEIGHT, id = EAID_1, strata = STRATA_1) %>%
  group_by(COUNTRY, GEOCD, GEONG) %>%
  summarise(
    survey_mean(
        CP_1 * CP_2,
        vartype = "ci",
        proportion = TRUE,
        prop_method = "logit"
    )
    )
```

Error in (function (object, ...) : missing values in `strata'

This fails because as_survey_design encounters NA values in STRATA_1. Fortunately, we can replace those values with numeric codes from the variable GEOCD:

If GEOCD is not NA, we'll use its numeric code in place of STRATA_1. Otherwise, we'd like to leave STRATA_1 unchanged. However, because both variables include *value labels*, we'll first need remove them with zap_labels. To avoid confusion with the original variable STRATA_1, we'll call our new variable STRATARC (for "strata recoded").

• STRATARC - Numeric codes for PMA sample strata (recoded for DRC samples)

```
dat2 <- dat2 %>%
  mutate(
    STRATARC = if_else(
        is.na(GEOCD),
        zap_labels(STRATA_1),
        zap_labels(GEOCD)
    )
)
```

```
Use zap_labels to
remove all labels
from an IPUMS
variable.
```

Notice that STRATARC replaces the NA values in STRATA_1, leaving its numeric values unchanged.

dat2 %>% count(GEOCD, STRATA_1, STRATARC)

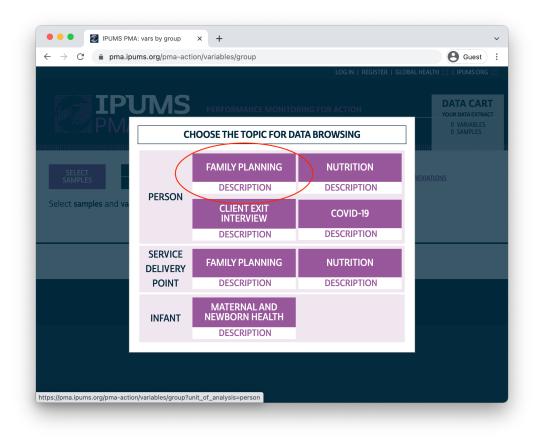
# A tibble: 28 × 4				
GEOCD	STRATA	A_1	STRATARC	n
<int+lbl></int+lbl>	<int+< td=""><td>lbl></td><td><int></int></td><td><int></int></td></int+<>	lbl>	<int></int>	<int></int>
1 1 [Kinshasa]	NA		1	1967
2 2 [Kongo Central]	NA		2	1511
3 NA	40410	[Bungoma – urban, Kenya]	40410	153
4 NA	40411	[Bungoma – rural, Kenya]	40411	488
5 NA	40412	[Kakamega – urban, Kenya]	40412	133
6 NA	40413	[Kakamega – rural, Kenya]	40413	438
7 NA	40414	[Kericho – urban, Kenya]	40414	249
8 NA	40415	[Kericho – rural, Kenya]	40415	453
9 NA	40416	[Kiambu — urban, Kenya]	40416	213
10 NA	40417	[Kiambu – rural, Kenya]	40417	311
11 NA	40418	[Kilifi – urban, Kenya]	40418	170
12 NA	40419	[Kilifi – rural, Kenya]	40419	455
13 NA	40420	[Kitui – urban, Kenya]	40420	153
14 NA	40421	[Kitui – rural, Kenya]	40421	585
15 NA	40422	[Nairobi – urban, Kenya]	40422	493
16 NA	40423	[Nandi – urban, Kenya]	40423	260
17 NA	40424	[Nandi – rural, Kenya]	40424	711
18 NA	40425	[Nyamira – urban, Kenya]	40425	143
19 NA	40426	[Nyamira – rural, Kenya]	40426	382
20 NA	40427	[Siaya – urban, Kenya]	40427	130
21 NA	40428	[Siaya – rural, Kenya]	40428	437
22 NA	40429	[West Pokot – urban, Kenya]	40429	104
23 NA	40430	[West Pokot – rural, Kenya]	40430	473
24 NA	56606	[Lagos, Nigeria]	56606	1088
25 NA	56611	[Kano – Urban]	56611	437
26 NA	56612	[Kano – Rural]	56612	561
27 NA	85401	[Urban, Burkina Faso]	85401	3053
28 NA	85402	[Rural, Burkina Faso]	85402	2154

Finally, we can use the updated survey design information to estimate the proportion of women who were using contraception at both Phase 1 and Phase 2 in every sample (including those from Kinshasa and Kongo Central).

```
dat2 %>%
 as_survey_design(weight = PANELWEIGHT, id = EAID_1, strata = STRATARC) %>%
 group_by(COUNTRY, GEOCD, GEONG) %>%
 summarise(
   survey_mean(
     CP_1 * CP_2,
     vartype = "ci",
     proportion = TRUE,
     prop method = "logit"
   )
 )
# A tibble: 6 \times 6
# Groups: COUNTRY, GEOCD [5]
                             GEOCDGEONGcoef `_low` `_upp`<int+lbl><dbl><dbl><dbl><dbl>
 COUNTRY
 <int+lbl>
                                              NA 0.188 0.164 0.214
1 1 [Burkina Faso]
                            NA
2 2 [Congo, Democratic Republic] 1 [Kinshasa] NA
                                                        0.320 0.288 0.353
3 2 [Congo, Democratic Republic] 2 [Kongo Central] NA
                                                        0.268 0.215 0.329
                                      NA 0.366 0.350 0.382
4 7 [Kenya]
                             NA
5 9 [Nigeria]
                                              2 [Lagos] 0.293 0.259 0.330
                              NA
6 9 [Nigeria]
                                               4 [Kano] 0.0537 0.0322 0.0880
                              NA
```

Now that we've identified variables that describe an IPUMS PMA analytic sample, let's proceed by downloading these and other variables of interest in a data extract from IPUMS PMA. In Chapter 2, we'll see that longitudinal data extracts can be requested in either **Long** or **Wide** format, depending on your needs.

2 LONGITUDINAL DATA EXTRACTS


Chapter 2 provides a guided tour of the IPUMS PMA data extract system, which you may use to combine survey data collected from multiple countries and multiple phases of the longitudinal study.

IPUMS PMA also makes it easy to switch between multiple units of analysis covered in PMA surveys. In addition to the longitudinal data featured in this guide, you'll find surveys representing:

- Service Delivery Points (SDPs)
- Client Exit Interviews conducted at SDPs
- Participants in special surveys covering topics like COVID-19, nutrition, and maternal & newborn health

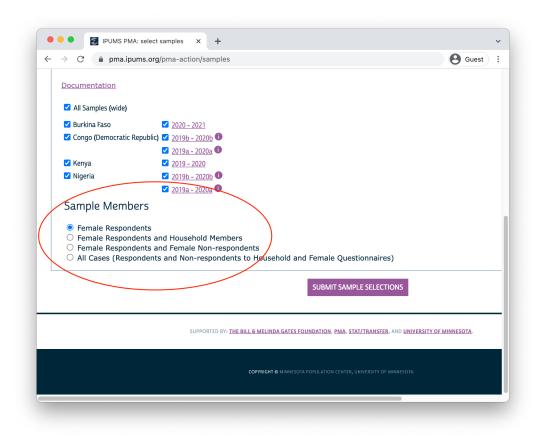
A video tour of the longitudinal extract system is available here on the IPUMS PMA Youtube channel.

To get started with a longitudinal data extract, you'll need to select the **Family Planning** topic under the **Person** unit of analysis.

2.1 SAMPLE SELECTION

Once you've selected the **Family Planning** option, you'll next need to choose between crosssectional or longitudinal samples. Cross-sectional samples are selected by default; these are nationally or sub-nationally representative samples collected each year dating backward as far as 2013.

\rightarrow C 🏻 $$ pma.i	pums.org/pma-	-action/samples					G uest
				LC	g in register	GLOBAL HEALTH	IPUMS.ORG
78613883*************							
IP	UM:		MANCE MONIT	ORING FOR AC	TION		
PM			SELECT DATA				
9387246190000001479254386 W W		52227575255925227475927423522					
		7895371957293853237294576789	13719572938592572945767895371	95729385323729457678953719	57293853237294576789537195	7293853237294576789537195721	938532372945767895371
ELECT SAN	IPLES						
riable documentation			o display only ma	terial correspon	ding to chosen		
tasets (<u>more informa</u>	<u>tion</u> on this feat	ure).			-		
itasets (<u>more informa</u> u may select any of th	<u>tion</u> on this feat	ure).			-	rized	
tasets (<u>more informa</u>	<u>tion</u> on this feat	ure).			-	ized	
itasets (<u>more informa</u> u may select any of th	<u>tion</u> on this feat	ure).			s you are author		ECTIONS
utasets (<u>more informa</u> nu may select any of th include in extracts.	<u>tion</u> on this feat	ure).			s you are author	rized BMIT SAMPLE SEL	ECTIONS
u may select any of th include in extracts. Cross-sectional	<u>tion</u> on this feat	ure).			s you are author		ECTIONS
u may select any of th include in extracts. Cross-sectional	tion on this feat	ure).			s you are author		ECTIONS
utasets (more information u may select any of the include in extracts. Cross-sectional Congitudinal	tion on this feat	ure).			s you are author		ECTIONS
utasets (more information u may select any of the include in extracts. Cross-sectional Congitudinal	tion on this feat	ure).			s you are author		ECTIONS
u may select any of th include in extracts. Cross-sectional Longitudinal FAMILY PLANNING -	tion on this feat	ure). ts for browsing. F	Please <u>log in</u> to se	e which sample:	s you are author	BMIT SAMPLE SEL	
u may select any of th include in extracts. Cross-sectional Longitudinal FAMILY PLANNING -	tion on this feat the below datase	ure). ts for browsing. F	Please <u>log in</u> to se	e which sample:	s you are author	BMIT SAMPLE SEL	
u may select any of th include in extracts. Cross-sectional Congitudinal FAMILY PLANNING -	person	ure). ts for browsing. F 2020	Please <u>log in</u> to se	e which sample:	s you are author sul sul 2017	BMIT SAMPLE SEL	2015
u may select any of th include in extracts. Cross-sectional Longitudinal FAMILY PLANNING -	tion on this feat the below datase	ure). ts for browsing. F	Please <u>log in</u> to se	e which sample:	s you are author	BMIT SAMPLE SEL	2015
u may select any of th include in extracts. Cross-sectional Congitudinal FAMILY PLANNING -	person 2021 2021 2021 2021 2021 2021 2021 202	ure). ts for browsing. F 2020	Please <u>log in</u> to se	e which sample:	s you are author sul sul 2017	BMIT SAMPLE SEL	


Longitudinal samples are only available from 2019 onward, and they include all of the available phases for each sampled country (sub-nationally representative samples for DRC and Nigeria are listed separately). You'll only find longitudinal samples for countries where Phase 2 data has been made available; as of this writing, Phase 1 data for Cote d'Ivoire, India, and Uganda can only be found under the Cross-sectional sample menu.

Clicking the Longitudinal button reveals options for either **Long** or **Wide** format. You'll find the same samples available in either case.

Important: if you decide to change formats after selecting variables, your Data Cart will be emptied and you'll need to begin again from scratch.

•••	IPUMS PMA: select samples × +
$\leftarrow \rightarrow $ C	🔒 pma.ipums.org/pma-action/samples 🔍 🔾 Guest
	LOG IN REGISTER GLOBAL HEALTH 🗗 IPUMS.ORG 🖪
	B.(0)
	PERFORMANCE MONITORING FOR ACTION
	HOME SELECT DATA MY DATA SUPPORT
SELECT SAMP	
	the web site can be filtered to display only material corresponding to chosen
latasets (more information	on this feature).
ou may select any of the be in include in extracts.	low datasets for browsing. Please log in to see which samples you are authorized
 Cross-sectional Longitudinal 	SUBMIT SAMPLE SELECTIONS
 Long 0 Wide 0)
• Wide •	
FAMILY PLANNING - PERS	ю
Documentation	
All Samples (wide)	←
🗌 Burkina Faso	2020 - 2021
Congo (Democratic Rep Congo (Democratic Rep	public) 2019b - 2020b
🗆 Kenya	2019-2020
🗆 Nigeria	2019b - 2020b 0
	2019a - 2020a
Sample Membe	rs
Female Responde	nts
O Female Responde	nts and Household Members nts and Female Non-respondents
	idents and Non-respondents to Household and Female Questionnaires)
	SUBMIT SAMPLE SELECTIONS
	SUPPORTED BY: THE BILL & MELINDA GATES FOUNDATION, PMA, STAT/TRANSFER, AND UNIVERSITY OF MINNESOTA.
	COPPRIGHT & MINYESOTA ROPULATION CENTER, UNIVERSITY OF MINIESOTA.

After you've selected one of the available longitudinal formats, choose one or more samples listed below. There are also several Sample Members options listed.

Female Respondents only includes women who completed *all or part* of a Female Questionnaire. **This option selects all members of the panel study.** In addition, it includes women who only participated in only one phase - we will demonstrate how to identify and drop these cases below.²¹

Female Respondents and Female Non-respondents includes all women who were eligible to participate in a Female Questionnaire. Eligible women are those age 15-49 who were listed on the roster collected in a Household Questionnaire. If an eligible woman declined the Female Questionnaire or was not available, variables associated with that questionnaire will be coded "Not interviewed (female questionnaire)".

PANELWOMAN indicates whether an individual is a member of the panel study.

ELIGIBLE indicates whether an individual was eligible for the female questionnaire.

²¹Women who completed all or part of the Female Questionnaire in *more than one phase* of the study are considered **panel members**. Women who completed it only at Phase 1 are included in a longitudinal extract, but they are not **panel members**. Likewise, women who completed it for the first time at Phase 2 are included, but are not **panel members** if they 1) will reach age 50 before Phase 3, or 2) declined the invitation to participate again in Phase 3.

Female Respondents and Household Members adds records for all other members of a Female Respondent's household. These household members did not complete the Female Questionnaire, but were listed on the household roster provided by the respondent to a Household Questionnaire. Basic demographic variables are available for each household member, as are common wealth, water, sanitation, and other variables shared for all members of the same household.

All Cases includes all members listed on the household roster from a Household Questionnaire. If the Household Questionnaire was declined or if no respondent was available, any panel member appearing in other phases of the study will be coded "Not interviewed (household RESULTFQ indicates whether an individual completed the Female Questionnaire.

RESULTHQ indicates whether a member of the individual's household completed the Household Questionnaire.

questionnaire)" for variables associated with the missing Household Questionnaire.

After you've selected samples and sample members for your extract, click the "Submit Sample Selections" button to return to the main data browsing menu.

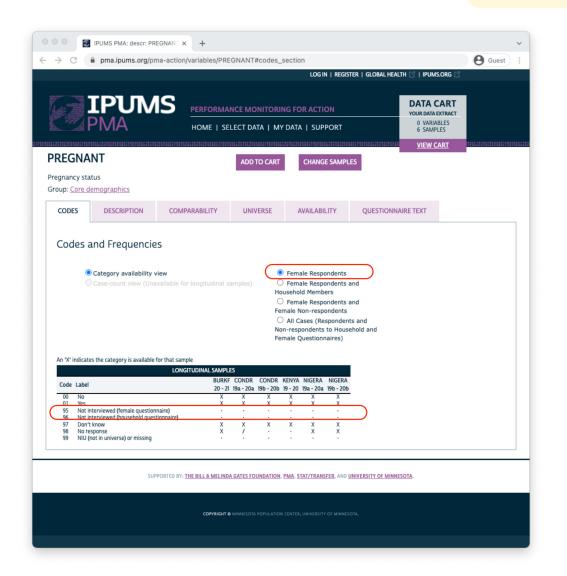
2.2 VARIABLE SELECTION

You can browse IPUMS PMA variables by topic or alphabetically by name, or you can search for a particular term in a variable name, label, value labels, or description.

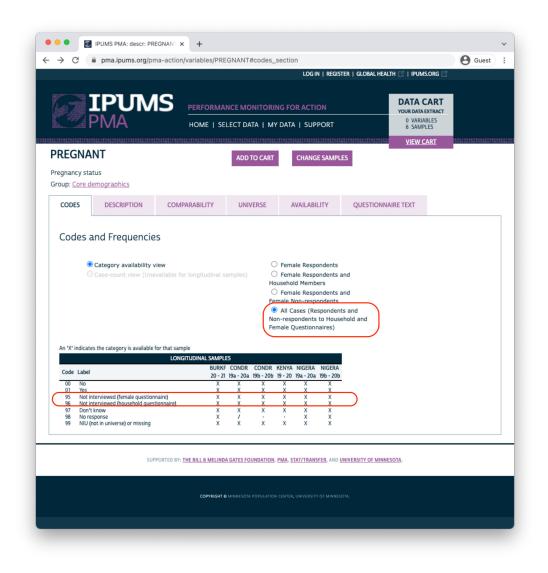
O IPUMS PMA: vars by group	× +	~
\leftarrow \rightarrow C $($ \triangleq pma.ipums.org/pma-a	action/variables/group?unit_of_analysis=person	Guest :
	LOG IN REGISTER GLOBAL I	iealth 📑 Ipums.org 📑
PMA	PERFORMANCE MONITORING FOR ACTION HOME SELECT DATA MY DATA SUPPORT	DATA CART YOUR DATA EXTRACT 0 VARIABLES 6 SAMPLES
250352176750276235232752625035217675027623523575362503521767502762352 21035217675027625521767605171057203853237204576760515710553210585323724457676	22 5 5 6 6 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 7 6 7 6	VIEW CART
CHANGE SAMPLES TOPICS - Samples have been Family Planning HEALTH	LECT VARIABLES A-z - SEARCH Q DISPLAY OPTIONS COUNTRY ABBRE , iables. , fertility preferences , sexual behavior	<u>VIATIONS</u>
ABORTION HOUSEHOLD WATER AND SANITATIO		
COVID-19	DISCONTINUATION OF FAMILY PLANNING NOT USING FAMILY PLANNING COPYRIC FUTURE FAMILY PLANNING USE FAMILY PLANNING ADVERTISEMENT	
	FAMILY PLANNING KNOWLEDGE FAMILY PLANNING ACCESS ATTITUDE TOWARDS FAMILY PLANNING	
	INFLUENCES ON FP	
	CONTRACEPTIVE ACCEPTABILITY CONTRACEPTIVE CALENDAR	
rascript:void(0);		

In this example, we'll select the Discontinuation of Family Planning topic. The availability of each associated variable is shown in a table containing all of the samples we've selected.

- x indicates that the variable is available for *all phases*
- / indicates that the variable is available for *one phase*
- - indicates that the variable is not available for *any phase*


You can click the + button to add a variable to your cart, or click a variable name to learn more.

	IPL PMA	PARFORMANCE MONITORING FOR ACTION HOME SELECT DATA MY DATA SUPPORT					DATA CART YOUR DATA EXTRACT 0 VARIABLES 6 SAMPLES			
CURRE	NTLY BROWSING: "F	AMILY PLANNING - PERSON"	5362593521 7191729365	7876927823523275 3237284576789537	9425935217673927623 94259352176739284376	(12227 57 62 68 352 1 7 8 7 6 7 6 8 9 5 3 7 7 8 5 7 2 9 3 8 1 5 7 3 7	278235232	VIEW CART	222217070707	17623623275362 14576789537191
SAM	INGE IPLES	SELECT VARIABLES TOPICS - Az - SEARCH Q BLE IS AVAILABLE IN THAT DATASET.		DISPL/ OPTIO		HELP COUNTRY ABE	REVIATIONS	2		
		Y PLANNING VARIABLES [TOP]	LC	ONGITUDINA	L SAMPLES					
Add to cart	Variable	Variable Label	<u>Type</u>	BURKF 2020 - 2021	CONDR 2019a - 2020a	CONDR 2019b - 2020b	KENYA 2019 - 2020	NIGERA 2019a - 2020a	NIGERA 2019b - 2020b	
0	FPSTOPMO	Month stopped using most recent method	Р	х	Х	х		Х	Х	
•	FPSTOPYR FPSTOPUSECMC	Year stopped using most recent method Date stopped using recent method of FP in century month	P P	x x	x x	x x	:	x x	x x	
Ð	FPIMPREMOVEYR	Tried to remove implant in past 12 months	Р	х	/	/	х	/	/	
ŏ	FPIMPRMVTRYLOC	Location of implant removal attempt	P	x	1	/	/			
•	FPIMPRMVYCOST	Why implant not removed: Service cost	Ρ	х	/	/	х	/	/	
Ð	FPIMPRMVYCOUNS	Why implant not removed: Provider counseled against	Р	х	/	/	х	/	/	
Õ	FPIMPRMVYCLOSED	Why implant not removed: Facility closed	Ρ	х	/	/	х	/	/	
Ŭ D	FPIMPRMVYOTH	Why implant not removed: Other	P	x			X X	,		
e	FPIMPRMVYREFUSE FPIMPRMVYELSEWH	Why implant not removed: Provider refused Why implant not removed: Referred elsewhere	P	x			x	,	,	
ĕ	FPIMPRMVYRETURN	Why implant not removed: Told to return another day	P	x	,	,	x	,	,	
ŏ	FPIMPRMVYTRAVEL	Why implant not removed: Travel cost	P	x	,	,	x	,	,	
Ð	FPIMPRMVYUNAVAIL	Why implant not removed: Qualified provider not available	Ρ	х	1	/	х	/	1	
•	FPIMPRMVYUNSUCC	Why implant not removed: Failed attempt by provider	Ρ	х	/	/	х	/	/	
		SUPPORTED BY: <u>The Bill & Melinda Gates Found</u> Copyright & Minnesota Pop					MINNESOTA	l.		


2.2.1 Codes

Let's take a look at the variable PREGNANT. You'll find the variable name and label shown at the top of the page. Below, you'll see several tabs beginning with the CODES tab. For discrete variables, this tab shows all of the available codes and value labels associated with each response. You'll also see the same X, /, and – symbols in a table indicating the availability of each response in each sample.

"Case-count view" is not available for longitudinal samples. For crosssectional samples, this option shows the frequency of each response.

Above, there are no responses for "Not interviewed (female questionnaire)" and "Not interviewed (household questionnaire)"; this is because only samples members included in a "Female Respondents" extract are displayed by default. If we instead choose "All Cases", this variable will include those response options because we'll include every person listed on the household roster (even if the Household or Female Questionnaire was not completed).

The symbol / again indicates that a particular response is available for some - but not all - phases of the study. For PREGNANT it indicates that one of the options was either unavailable or was not selected by any sample respondents in a particular phase. If a variable was not included in all phases of the study, all response options will be marked with this symbol. For example, consider the variable COVIDCONCERN, indicating the respondent's level of concern about becoming infected with COVID-19.

							JG IN REGIS		BAL HEALTH	📑 IPUMS.	org 📑		
E	IPUM PMA	ном	ne sei	LECT DA	TA MY	ig for a	UPPORT			DATA C YOUR DATA E 0 VARIAE 6 SAMPL	KTRACT LES ES		
	CONCERN	278226222757686537952788532772845 27822676788537955278853772845	123113175361997 76749537185728		TO CART		NGE SAMPI			VIEW CA	<u>\RT</u>	23357174759274235533 2834535137284574789	537193
	bout getting infected			ADDI									
CODES	DESCRIPTION	COMPARABI	LITY	UNIV	EDEE	AVAIL	ABILITY	QUE	STIONNAIRI	TEVT			
(and Frequencie Category availability of Case-count view (Una	view	tudinal sa		e Ho Fer No	usehold Me Female Re male Non-n All Cases n-responde	espondents mbers espondents espondents (Responder nts to Hous	and hts and		: 1241			
	Category availability v	view available for longit	tudinal sa		e Ho Fer No	Female Re usehold Me Female Re male Non-n All Cases	espondents mbers espondents espondents (Responder nts to Hous	and hts and		. 1641			
	Category availability Case-count view (Una	view available for longit	AL SAMPLE	amples)	Ho Fer No	Female Re usehold Me Female Re nale Non-n All Cases n-responde nale Quest	espondents mbers espondents espondents (Responder nts to Hous onnaires)	and hts and sehold and		. 1641			
	Category availability Case-count view (Una case-count view (Una ates the category is available	view vvailable for longit for that sample	AL SAMPLE BURKF	amples)	Ho Fer No Fer CONDR	Female Re usehold Me Female Re nale Non-re All Cases n-responde male Quest	espondents mbers espondents espondents (Responder nts to Hous onnaires)	and hts and sehold and		. 1641			
An 'X' indica Code Labe	Category availability Case-count view (Una tes the category is available el cconcerned	view vvailable for longit for that sample	AL SAMPLE BURKF	amples)	Ho Fer No Fer CONDR	Female Re usehold Me Female Re nale Non-re All Cases n-responde male Quest	espondents mbers espondents espondents (Responder nts to Hous onnaires) RA NIGERA	and hts and sehold and		. IEAI			
An 'X' indica Code Labe 01 Not 02 Alit 03 Con	Category availability Case-count view (Una tes the category is available el cconcerned tic concerned nerred	view vvailable for longit for that sample	AL SAMPLE BURKF	amples)	Ho Fer No Fer CONDR	Female Re usehold Me Female Re nale Non-re All Cases n-responde male Quest	espondents mbers espondents espondents (Responder nts to Hous onnaires) RA NIGERA	and hts and sehold and					
An 'X' indica Code Labe 01 Not 02 A lit 03 Con 04 Ver	Category availability Case-count view (Una ates the category is available el cconcerned tic concerned neerned neerned y concerned	view vvailable for longit for that sample LONGITUDINA	AL SAMPLE BURKF	amples)	Ho Fer No Fer CONDR	Female Re usehold Me Female Re nale Non-re All Cases n-responde male Quest	espondents mbers espondents espondents (Responder nts to Hous onnaires) RA NIGERA	and hts and sehold and		. 1641			
An 'X' indica Code Labe Ol Not O2 Alit 3 Con 04 Very 55 Not	Category availability (Una Case-count view (Una ates the category is available el concerned tic concerned nerred y concerned rently / previously infected wi	view vvailable for longit for that sample LONGITUDINA LONGITUDINA th COVID-19 naire)	AL SAMPLE BURKF	amples)	Ho Fer No Fer CONDR	Female Re usehold Me Female Re nale Non-re All Cases n-responde male Quest	espondents mbers espondents espondents (Responder nts to Hous onnaires) RA NIGERA	and hts and sehold and					
(() An 'X' indica Code Labe 01 Not 02 Ali 03 Con 04 Very 05 Cur 95 Not 96 Not	Category availability (Una Case-count view (Una ates the category is available el concerned tic concerned nerred y concerned rently / previously infected wi interviewed (flowashold question interviewed i	view vvailable for longit for that sample LONGITUDINA LONGITUDINA th COVID-19 naire)	AL SAMPLE BURKF	amples)	Ho Fer No Fer CONDR	Female Re usehold Me Female Re nale Non-re All Cases n-responde male Quest	espondents mbers espondents espondents (Responder nts to Hous onnaires) RA NIGERA	and hts and sehold and					
(() An 'X' indica Code Labe 01 Not 02 Ali 03 Con 04 Very 05 Cur 95 Not 96 Not	Category availability Case-count view (Una case-count view (Una ates the category is available el concerned rened y concerned interviewed (foreias) infected wi interviewed (foreias) foreited wi interviewed (fo	view vvailable for longit for that sample LONGITUDINA LONGITUDINA th COVID-19 naire)	AL SAMPLE BURKF	amples)	Ho Fer No Fer CONDR	Female Re usehold Me Female Re nale Non-re All Cases n-responde male Quest	espondents mbers espondents espondents (Responder nts to Hous onnaires) RA NIGERA	and hts and sehold and		- IEA I			

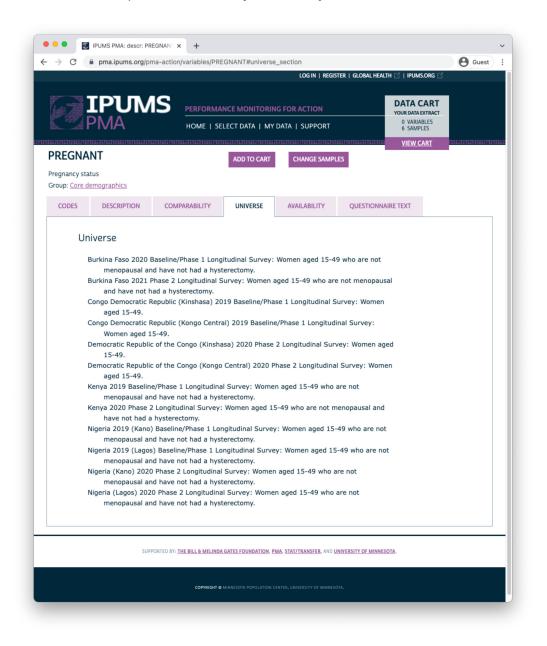
Because Phase 1 questionnaires were administered prior to the emergence of COVID-19, this variable only appeared on Phase 2 questionnaires. The symbol / indicates limited availability across phases.

2.2.2 Variable Description

You'll find a detailed description for each variable on the DESCRIPTION tab. This tab also indicates whether a particular question appeared on the Household or Female Questionnaire.

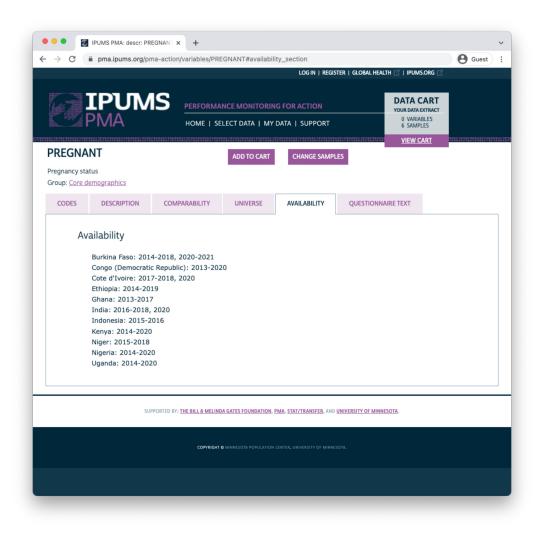
					TER GLOBAL HEALTH	🖸 IPUMS.ORG 📑	
						DATA CART YOUR DATA EXTRACT 0 VARIABLES	
PREGNAN	TVIA IT	HOME SEI	9621 767 592 7623 623 27 634 59 33 1 P	DATA SUPPORT		6 SAMPLES	102521767502762352 225365511728459474
Pregnancy statu Group: <u>Core der</u>	15		ADD TO CART				
CODES	DESCRIPTION	COMPARABILITY	UNIVERSE	AVAILABILITY	QUESTIONNAIRI	ETEXT	
PREG		hether or not the wom d with this variable wa					
	SUPPC	DRTED BY: <u>The Bill & Melinda G</u>	ATES FOUNDATION, PN	MA, STAT/TRANSFER, AND UN	IIVERSITY OF MINNESOTA		
		COPYRIGHT @ M	INNESOTA POPULATION CE	NTER, UNIVERSITY OF MINNESO	ĩA.		

2.2.3 Comparability Notes


The COMPARABILITY tab describes important differences between samples. Additionally, it may contain information about similar variables appearing in DHS samples provided by IPUMS DHS.

IPUM PMA		NCE MONITORIN			DATA CART YOUR DATA EXTRACT 0 VARIABLES 6 SAMPLES	
PREGNANT Pregnancy status Group: <u>Core demographics</u>	2 TATALAN DALAK MANANGKANAN DALAK MANANGKANAN DALAK MANANGKANAN DALAK MANANGKANAN DALAK MANANGKANAN DALAK MANA	ADD TO CART	CHANGE SAMPL	ES	<u>VIEW CART</u>	
CODES DESCRIPTION	COMPARABILITY	UNIVERSE	AVAILABILITY	QUESTIONNAIRE	TEXT	
There are minor univer Comparability wi PREGNANT in IPUMS-PI be differences in quest Universe Tab of the IPL	th <u>IPUMS-DHS</u> MA is similar to the va ionnaire text or the va	ariable PREGNAN ariable's universe	T in IPUMS-DHS. Ti ;; see the Survey To	here may		
	ORTED BY: <u>The Bill & Melinda</u>	GATES FOUNDATION, PM	IA, <u>STAT/TRANSFER,</u> AND <u>UN</u>	IVERSITY OF MINNESOTA.		
SUPPO						

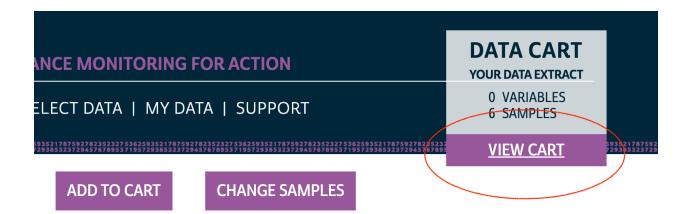
2.2.4 Sample Universe


The UNIVERSE tab describes selection criteria for this question. In this case, there are some differences between samples:

- In DRC samples, all women aged 15-49 received this question.
- For all other samples, the question was skipped if any such woman previously indicated that she was menopausal or had a hysterectomy.

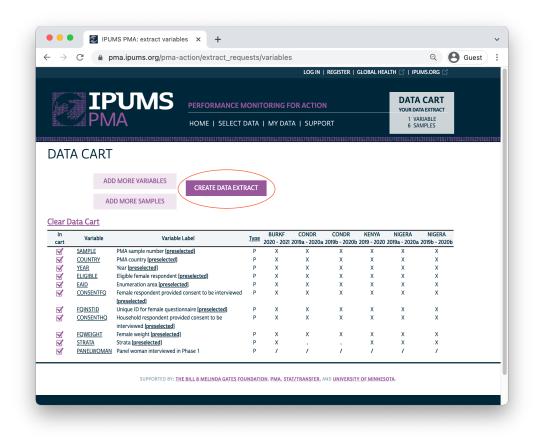
2.2.5 Availability Across Samples

The AVAILABILITY tab shows all other samples (including cross-sectional samples) where this variable is available.


2.2.6 Questionnaire Text

Finally, you'll find the full text of each question on the QUESTIONNAIRE TEXT tab. Each phase of the survey is shown separately, and you may click the "view entire document: text" link to view the complete questionnaire for a particular sample in any given phase.

	pma.ipums.org/	pma-action/variables/PRI	EGNANT#questio				e Guest
				LOG IN REGIS	ter Global Health 🗋	PUMS.ORG	
	[PUN			NG FOR ACTION		OATA CART	
	PMA			y data support		0 VARIABLES 6 SAMPLES	
REGNA			ADD TO CART	CHANGE SAMPL		VIEW CART	9352174759274235222752 203853337294574749537
gnancy stat			ADD TO CART	CHANGE SAMIFL	E5		
	emographics						
CODES	DESCRIPTION	COMPARABILITY	UNIVERSE	AVAILABILITY	QUESTIONNAIRE	TEXT	
Qu	estionnaire T	ext					
<u>Burkir</u>		Congo (Democratic Republic) Ke 2019b	enya 2019	<u>Nigeria 2019b</u>			
Burkir		Congo (Democratic Republic) Ke 2020a	enya 2020	<u>Nigeria 2020a</u>			
<u>Cong</u> 2019a	o (Democratic Republic)	Congo (Democratic Republic) Ni 2020b	<u>geria 2019a</u>	Nigeria 2020b			
_		10100					
Bu	rkina Faso 2020				<u>top</u>		
Qu	estionnaire forn	n		view entire do	cument: text		
14	. Are you pregn	ant now?					
	[] Yes						
	[] No						
	[] Unsure						
	[] No response						
Bu	rkina Faso 2021				top		
Qu	estionnaire forn	n		view entire do	cument: text		
14	. Are you pregn	ant now?					
	[] Yes						
	[] No						
	[] Unsure						
	[] No response						


2.2.7 Checkout

Use the buttons at the top of this page to add the variable to your Data Cart, or to "VIEW CART" and begin checkout.

2.3 DATA FOR R USERS

Your Data Cart shows all of the variables you've selected, plus several "preselected" variables that will be automatically included in your extract. Click the "CREATE DATA EXTRACT" button to prepare your download.

2.3.1 Select a Fixed-width File

Before you submit an extract request, you'll have the opportunity to choose a "Data Format". **R users should select a Fixed-width text file (.dat)** - you'll notice that data formatted for Stata, SPSS, and SAS are also available. CSV files are provided, but not recommended. (If you wish to change Sample Members, you may do so again here.)

			LC	og in Register	GLOBAL HEALTH	🖞 IPUMS.ORG 🛛
4744134924*****4972446681 4443517************************************						
	PUMS MA					
			9/97/76/55/2005/2007/2006/18/07/76/65/2017/1 13729457676553715572936533372945767655371	#139332[1/0/392/0235232/23#2 957293853237294576789337195	323321767327963323273327 7293653237294576769537195	935476799279232323275767695371955 2936532372945767695371955
ENTRACT	REQUEST (<u>H</u>	<u>ELP</u>)				
SAMPLES:	6	(show)	Change			
VARIABLES:	n	(show)	Change			
DATA FORMAT:	.dat (fixed-width text)		Change			
STRUCTURE:	Rectangular (longitudinal - l	ong)	Change			
SAMPLE MEMBERS:	Female Respondents		<u>Change</u>			
ESTIMATED SIZE:	11.2 MB					
Describe yo	ur extract					
· · ·						
				10		
SUBMIT EXTRACT						

Once the Fixed-width option is selected, you may add a description and then proceed to the download page.

2.3.2 Download

After a few moments, you'll receive an email indicating that your extract has been created. You'll need to obtain two files from the download page:

- Click the green "Download DAT" button to download the data file. You'll receive a file with a number like pma_00003.dat.gz.
- Right click on "DDI" and click "Save link as". You'll receive a corresponding XML file like pma_00003.xml.

Extract		Formatted	Fixed-wid	0th Text Files		Revise	Resubmit		Hide selections
Number	Date	Data	Data	Command Files 😐	Codebook O	Extract	Extract	Description (click to edit)	Show all
20	208-04-03		Download .DAT	SPSS SAS STATA	Basic DDI	cevise			
19	2018-03-23					revise	resubmit		
18	207-10-25		Ŧ		T .	texise	resubmit		
17	207-10-18					caviae	resubmit	CPS Exercise 2 for ripums	
16	200-09-26					texise	resubmit		
			 Click here 	e 2) Right clicl	ζ		Example for R vignette on data values. 2016 ASEC,	
15	207-09-22		to downl	oad	here to	cevise	resubmit	only states bordering MN and a few variables	
			the data.		select the			- and the Westman for Relation	
			the data.		DDI.				
Extract		Formatted	Fixed-wid	Ith Text Files		Revise	Resubmit		Hide selections
Number	Date	Data	Data	Command Files 😐	Codebook 😆	Extract	Extract	Description (click to edit)	Show all
20	208-04-03		Download DAT	SPSS SAS STATA	Basic DO1	ration .		-	- 0
19	208-03-23					Open lin	k in nev tab		
18	207-10-25	= 3)	Then select "	Save link as"		Open lin	k in new wind	Des .	
17	2007-10-18	_ 5)			C ^{II}	Open lin	k in incognito	window	
16	207-09-26		to save the D	ad Linked File	<u> </u>	Save lin			
8	200-09-22		to save the D	ЪI. –	1		address	n data values. 2016 ASEC, k and a few variables	

Place both files in a folder that R can use as its working directory. We **strongly recommend** using RStudio projects to manage all of the files and analysis scripts used for a particular research project. We'll place our files in a sub-folder called "data" within our own RStudio project folder.

Open RStudio (or R) and load the packages ipumsr and tidyverse. If you are not using an RStudio project, you will need to change your working directory to match the location of your downloaded files.

```
library(ipumsr)
library(tidyverse)
setwd("~/Downloads") # ONLY if not using an RStudio project (change as needed)
```

We'll now demonstrate loading both a long and a wide extract, and we'll take a brief look at the structure of each.

2.4 LONG DATA STRUCTURE

We've downloaded a **Long** data extract (**Female Respondents** only) and saved it in a folder called "data" in our working directory. We'll now load it into R as an object called long.

To load an IPUMS PMA extract into R, you'll need to reference *both* the DDI file *and* the fixed-width data file in the function read_ipums_micro from ipumsr.

```
long <- read_ipums_micro(
    ddi = "data/pma_00003.xml",
    data = "data/pma_00003.dat.gz"
)</pre>
```

In a **Long** extract, data from each phase will be organized in *separate rows*. Here, responses from three panel members are shown:

```
long %>%
filter(FQINSTID %>% str_starts("011") | FQINSTID %>% str_starts("015")) %>%
arrange(FQINSTID) %>%
select(FQINSTID, PHASE, AGE, PANELWOMAN)
```

#	A tibble: 6×4					
	FQINSTID	Pŀ	PHASE		AGE	PANELWOMAN
	<chr></chr>	<j< td=""><td>nt+lbl></td><td></td><td><int+lbl></int+lbl></td><td><int+lbl></int+lbl></td></j<>	nt+lbl>		<int+lbl></int+lbl>	<int+lbl></int+lbl>
1	011W5S0HN91I4H4I3T9JCMBHB	1	[Baseline]		29	NA
2	011W5S0HN91I4H4I3T9JCMBHB	2	[First follow up	5]	30	1 [Yes]
3	015NP6FJTIA98FYCBBBS1F0F7	1	[Baseline]		47	NA
4	015NP6FJTIA98FYCBBBS1F0F7	2	[First follow up	5]	48	1 [Yes]
5	015WYNN02WXHH6JA4HA9PL1MR	1	[Baseline]		20	NA
6	015WYNN02WXHH6JA4HA9PL1MR	2	[First follow up	5]	21	1 [Yes]

Each panel member receives a unique ID shown in FQINSTID. The variable PHASE shows that each woman's responses to the Phase 1 Female Questionnaire appears in the first row, while her Phase 2 responses appear in the second. AGE shows each woman's age when she completed the Female Questionnaire for each phase.

PANELWOMAN indicates whether the woman completed all or part of the Female Questionnaire in a *prior* phase, and that she'd agreed to continue participating in the panel study at that time. The value NA appears in the rows for Phase 1, as PANELWOMAN was not included in Phase 1 surveys.

We mentioned above that you'll also include responses from some non-panel members when you request an extract with **Female Respondents**. These include women who did not complete all or part the Female Questionnaire in a prior phase, as indicated by PANELWOMAN. These women are not assigned a value for FQINSTID - instead, you'll find an empty string:

```
long %>% count(PHASE, PANELWOMAN, FQINSTID == "")
# A tibble: 3 × 4
PHASE PANELWOMAN `FQINSTID == ""` n
<int+lbl> <int+lbl> <lgl> <int>
1 1 [Baseline] NA FALSE 23591
2 2 [First follow up] 0 [No] TRUE 6586
3 2 [First follow up] 1 [Yes] FALSE 18194
```

Chapter 1 describes **Inclusion Criteria for Analysis** and shows how to identify women in a **Wide** extract who did not complete the Female Questionnaire in both phases. In **Long** format, we use group_by to ensure that there is one row for every FQINSTID where PHASE == 1 and another row where PHASE == 2 & RESULTFQ == 1.

```
long <- long %>%
group_by(FQINSTID) %>%
filter(any(PHASE == 1) & any(PHASE == 2 & RESULTFQ == 1)) %>%
ungroup()
```

The *de facto* population is identified where RESIDENT takes the value 11 or 22 in both rows.

```
long <- long %>%
group_by(FQINSTID) %>%
filter(all(RESIDENT %in% c(11, 22))) %>%
ungroup()
```

Following these steps, you can check the size of each analytic sample like so. (Reminder: samples for DRC and Nigeria are sub-nationally representative, so we'll show separate frequencies for each GEOCD and GEONG).

long %>% count(COUNTRY, GEOCD, GEONG, PHASE)

```
# A tibble: 12 \times 5
  COUNTRY
                               GEOCD
                                                  GEONG
                                                            PHASE
                                                                                 n
  <int+lbl>
                               <int+lbl>
                                                 <int+lbl> <int+lbl>
                                                                              <int>
1 1 [Burkina Faso]
                               NA
                                                 NA
                                                          1 [Baseline]
                                                                               5212
                                                            2 [First follow u... 5212
2 1 [Burkina Faso]
                               NA
                                                 NA
3 2 [Congo, Democratic Republic] 1 [Kinshasa]
                                                          1 [Baseline]
                                                                               1973
                                                NA
4 2 [Congo, Democratic Republic] 1 [Kinshasa]
                                                          2 [First follow u... 1973
                                                 NA
5 2 [Congo, Democratic Republic] 2 [Kongo Central] NA
                                                          1 [Baseline]
                                                                               1514
                                                          2 [First follow u... 1514
6 2 [Congo, Democratic Republic] 2 [Kongo Central] NA
7 7 [Kenya]
                               NA
                                                 NA
                                                            1 [Baseline]
                                                                               6939
8 7 [Kenya]
                               NA
                                                 NA
                                                            2 [First follow u... 6939
9 9 [Nigeria]
                               NA
                                                  2 [Lagos] 1 [Baseline]
                                                                               1089
10 9 [Nigeria]
                                                  2 [Lagos] 2 [First follow u... 1089
                               NA
11 9 [Nigeria]
                               NA
                                                  4 [Kano] 1 [Baseline]
                                                                                998
12 9 [Nigeria]
                                                  4 [Kano] 2 [First follow u... 998
                               NA
```

2.5 WIDE DATA STRUCTURE

We've also downloaded a **Wide** data extract (**Female Respondents** only) and saved it in the "data" folder in our working directory. We'll also load this extract into R as an object named wide.

```
wide <- read_ipums_micro(
    ddi = "data/pma_00004.xml",
    data = "data/pma_00004.dat.gz"
)</pre>
```

In a **Wide** extract, all of the responses from one woman appear in the *same row*. The IPUMS PMA extract system appends a numeric suffix to each variable name corresponding with the phase from which it was drawn. Consider our three example panel members again:

```
wide %>%
filter(FQINSTID %>% str_starts("011") | FQINSTID %>% str_starts("015")) %>%
select(FQINSTID, AGE_1, AGE_2, PANELWOMAN_1, PANELWOMAN_2)
```

#	A tibble: 3 × 5				
	FQINSTID	AGE_1	AGE_2	PANELWOMAN_1	PANELWOMAN_2
	<chr></chr>	<int+lbl></int+lbl>	<int+lbl></int+lbl>	<int+lbl></int+lbl>	<int+lbl></int+lbl>
1	011W5S0HN91I4H4I3T9JCMBHB	29	30	NA	1 [Yes]
2	015NP6FJTIA98FYCBBBS1F0F7	47	48	NA	1 [Yes]
3	015WYNN02WXHH6JA4HA9PL1MR	20	21	NA	1 [Yes]

Each panel member has one unique ID shown in FQINSTID. However, AGE is parsed into two columns: AGE_1 shows each woman's age at Phase 1, and AGE_2 shows her age at Phase 2.

As we've discussed, PANELWOMAN is not available for Phase 1, as it indicates whether the woman completed all or part of the Female Questionnaire in a *prior* phase. For this reason, all values in PANELWOMAN_1 are NA. Most variables are copied once for each phase, even if they - like PANELWOMAN_1 - are not available for all phases.

You might expect the total length of a **Wide** extract to be half the length of a corresponding **Long** extract. This is not the case! A **Wide** extract includes one row for each woman who completed all or part of the Female Questionnaire *for any phase* - you'll find placeholder columns for phases where the interview was not conducted.

```
wide %>%
filter(FQINSTID == "0C8VQU6B03BXLAVVZ8SB90EKQ") %>%
select(RESULTFQ_1, AGE_1, RESULTFQ_2, AGE_2)
# A tibble: 1 × 4
RESULTFQ_1 AGE_1 RESULTFQ_2 AGE_2
```

KESULITQ_1AGE_1KESULITQ_2AGE_2<int+lbl><int+lbl><int+lbl>1 1 [Completed] 312 [Not at home] 95 [Not interviewed (female questionnaire)]

In a **Long** extract, rows for the missing phase are dropped. In this example, the woman was "not at home" for the Phase 2 Female Questionnaire. When we select a **Long** extract containing only Female Respondents, her Phase 2 row is excluded automatically (it will be included if you request an extract containing **Female Respondents and Female Non-respondents**).

```
long %>%
filter(FQINSTID == "0C8VQU6B03BXLAVVZ8SB90EKQ") %>%
select(PHASE, RESULTFQ, AGE)
```

#	A tibble: 1 × 3						
	PHASE RESULTFQ		SULTFQ	AGE			
	<int+lbl></int+lbl>		<j< th=""><th>nt+lbl></th><th><int+lbl></int+lbl></th></j<>	nt+lbl>	<int+lbl></int+lbl>		
1	1	[Baseline]	1	[Completed]	31		

The **Inclusion Criteria for Analysis** section in Chapter 1 shows how to identify members of the *de facto* population who completed the Female Questionnaire in both phases for a **Wide** extract. Those steps are repeated here:

```
wide <- wide %>%
filter(
    RESIDENT_1 %in% c(11, 22) & RESIDENT_2 %in% c(11, 22),
    RESULTFQ_2 == 1
)
```

Following these steps, each analytic sample contains the same number of cases shown in the final **Long** format extract above.

wide %>% count(COUNTRY, GEOCD, GEONG)

#	A t	ibble:	6 × 4							
	COUNTRY			GEC	CD	GEC	NG	n		
	<int+lbl></int+lbl>				<ir< td=""><td>t+lbl></td><td><ir< td=""><td>t+lbl></td><td><int></int></td><td></td></ir<></td></ir<>	t+lbl>	<ir< td=""><td>t+lbl></td><td><int></int></td><td></td></ir<>	t+lbl>	<int></int>	
1	1 [Burkina	a Faso]		NA		NA		5212	
2	2 [Congo,	Democratic	Republic]	1	[Kinshasa]	NA		1973	
3	2 [Congo,	Democratic	Republic]	2	[Kongo Central]	NA		1514	
4	7 [[Kenya]			NA		NA		6939	
5	9 [Nigeria	a]		NA		2	[Lagos]	1089	
6	9 [Nigeria	a]		NA		4	[Kano]	998	

2.6 WHICH FORMAT IS BEST FOR ME?

The choice between **Long** and **Wide** formats ultimately depends on your research objectives.

Many data manipulation tasks, for example, are faster and easier to perform in the **Wide** format. In the example above, we needed to identify women who completed a Female Questionnaire and were members of the *de facto* population in both phases. In the **Long** format, we first had to group the data by FQINSTID with group_by, thereby ensuring that a Phase 1 and Phase 2 check could be performed for each woman. In preparing for this post, this approach took about 36.5 seconds. By comparison, the same task was achieved without group_by in **Wide** format in just 0.16 seconds. If your workflow requires multiple comparisons between phases, the **Wide** format may be the best choice!

On the other hand, many of the longitudinal modeling packages available for R require data to be in a **Long** format - this includes both the survival package used in Chapter 6 and the Ime4 package for multilevel models. Users who prefer the **Wide** format for data cleaning and exploration can manually switch to **Long** format with help from pivot_longer, for example:

wide %>% select(FQINSTID, AGE_1, PREGNANT_1, AGE_2, PREGNANT_2)

# A	tibble: 17,725 × 5						
	FQINSTID	AGE_1	PF	REGNANT_1	AGE_2	PR	EGNANT_2
	<chr></chr>	<int+lbl></int+lbl>	<j< td=""><td>nt+lbl></td><td><int+lbl></int+lbl></td><td><i< td=""><td>.nt+lbl></td></i<></td></j<>	nt+lbl>	<int+lbl></int+lbl>	<i< td=""><td>.nt+lbl></td></i<>	.nt+lbl>
1	uuid:0005f6d7-b7cd-46f6-8a6f-5f051b6ab4a2	30	0	[No]	31	0	[No]
2	uuid:0006cb76-09d1-4f2a-a92d-c12fcaf194b5	34	1	[Yes]	34	0	[No]
3	uuid:00204481-5cae-4188-abb3-0367d0ed9c14	17	0	[No]	18	0	[No]
4	uuid:002398f4-8f2d-4095-8019-c306d39cf2b9	29	0	[No]	29	0	[No]
5	uuid:00407300-c1e6-4e24-ab8d-8af5e1ca85a6	25	0	[No]	25	0	[No]
6	uuid:00413ed1-d176-44fb-a232-7e53c1db0958	32	0	[No]	32	0	[No]
7	uuid:0048a052-66ff-4ed5-9fa9-fc72e6dab696	38	0	[No]	39	0	[No]
8	uuid:004d80f0-90c6-4b77-bb4d-21d09c84fe74	38	0	[No]	38	0	[No]
9	uuid:00504cf5-870c-4a02-aad7-ea5d47b135ff	33	0	[No]	34	0	[No]
10	uuid:00534792-fb84-47b4-8606-e145d74cd089	24	0	[No]	25	0	[No]
11	uuid:0058cbb8-9892-4a60-b9ed-fb556a21f862	29	0	[No]	30	0	[No]
12	uuid:00682e93-0483-42b4-8f8d-2e0c36a26d37	16	0	[No]	17	0	[No]
#	. with 17,713 more rows						

With pivot_longer, you can strip the suffix 1 or 2 from each variable, placing the result in a new column called PHASE. Then, we'll pivot each woman's age and pregnancy status from 2 **Wide** columns into a single **Long** one.

```
wide %>%
select(FQINSTID, AGE_1, PREGNANT_1, AGE_2, PREGNANT_2) %>%
pivot_longer(
    !FQINSTID,
    names_pattern = "(.*)_([1-2])",
    names_to = c(".value", "PHASE")
)
```

We will revisit pivot_longer when analyzing PMA Contraceptive Calendar data in Chapter 6.

# A tibble: 35,450 × 4		
FQINSTID	PHASE AGE PREGNANT	
<chr></chr>	<chr> <int+lbl> <int+lbl></int+lbl></int+lbl></chr>	
1 uuid:0005f6d7-b7cd-46f6-8a6f-5f051b6a	ab4a2 1 30 0 [No]	
2 uuid:0005f6d7-b7cd-46f6-8a6f-5f051b6a	ab4a2 2 31 0 [No]	
3 uuid:0006cb76-09d1-4f2a-a92d-c12fcaf2	194b5 1 34 1 [Yes]	
4 uuid:0006cb76-09d1-4f2a-a92d-c12fcaf3	194b5 2 34 0 [No]	
5 uuid:00204481-5cae-4188-abb3-0367d0ed	d9c14 1 17 0 [No]	
6 uuid:00204481-5cae-4188-abb3-0367d0ed	d9c14 2 18 0 [No]	
7 uuid:002398f4-8f2d-4095-8019-c306d390	cf2b9 1 29 0 [No]	
8 uuid:002398f4-8f2d-4095-8019-c306d390	cf2b9 2 29 0 [No]	
9 uuid:00407300-c1e6-4e24-ab8d-8af5e1ca	a85a6 1 25 0 [No]	
10 uuid:00407300-c1e6-4e24-ab8d-8af5e1ca	a85a6 2 25 0 [No]	
11 uuid:00413ed1-d176-44fb-a232-7e53c1d	00958 1 32 0 [No]	
12 uuid:00413ed1-d176-44fb-a232-7e53c1d	00958 2 32 0 [No]	
# with 35,438 more rows		

Manipulating patterns in variable names with pivot_longer takes practice, and we imagine many users will find it easier to simply work with data in the **Long** format from the beginning.

Fortunately, the IPUMS PMA extract system makes it easy to select the samples, sample members, and variables that matter to your particular research question. Choices for **Long** and **Wide** data formats save an additional data cleaning step, allowing you to jump into longitudinal analysis as quickly as possible.

3 PANEL MEMBERSHIP

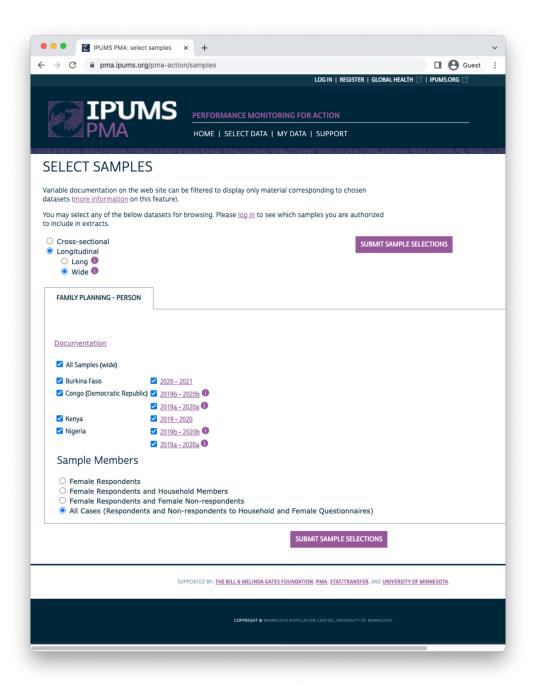
In Chapter 1, we mentioned that PMA uses a **multi-stage cluster sample design** for each phase of the panel study. This means you'll find data from a Household Questionnaire administered once each year, and you'll find data from a subsequent Female Questionnaire collected shortly afterward. Three years - or phases - of data will be collected in total.

Because data are collected through two questionnaires administered in three phases, there are several places where incomplete or missing data may indicate **loss to follow-up** - dropped cases from the original panel design. At the same time, PMA uses an **open panel** design, whereby women who move into the study area or reach participation age after Phase 1 are permitted to join the panel at any subsequent phase.

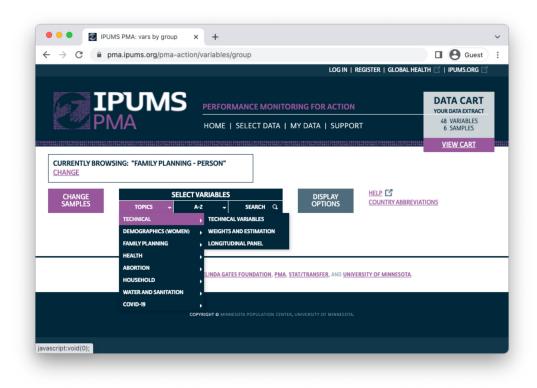
In Chapter 3, we'll cover these issues in detail. To illustrate, we'll be using a **Wide** format data extract from IPUMS PMA that includes **All cases** from both currently available phases. In other words, we'll include every member of the household roster collected in the Household Questionnaire at the start of each phase (even if no Female Questionnaire was completed by that person).

To make our explanation easier to follow, we'll make use of a data visualization tool known in clinical research settings as a CONSORT diagram. This type of diagram is a flowchart showing enrollment and attrition points, most typically in longitudinal studies. PMA publishes a CONSORT diagram together with the User Notes for each longitudinal sample, which you can find via the links below:

R code showing how to build a combined CONSORT diagram with ggplot2 is available on the IPUMS PMA data analysis blog.


- Burkina Faso
- DRC Kinshasa
- DRC Kongo Central
- Kenya
- Nigeria Lagos
- Nigeria Kano

We've constructed a single diagram showing all six samples available from IPUMS PMA, and we'll demonstrate how to identify cases for each level in turn:


		Not eligible for Phase 1 FQ	Not interviewed for Phase I FQ: not home. refused, vacant, etc	Declined Phase 2 follow-up at Phase 1	Women age 50 at Phase 2	Household not found, HQ incomplete, or woman missing from HQ roster	No longer residents	Incomplete Phase 2 FQ survey: not home, refused, incapacitated, etc	
Nigeria Lagos	6062 	→ 4490	· 507	- 1425 - 1425	26	45 → 146 45 1208 New Phase 1 Dwelling Dwelling	45 mit 45	45 1084	1129
Nigeria Kano	5722 	4589 ↓ 4589	- II - II - 6	- 1098	13	28 → 35 28 1022 New Phase 1 Dwelling Dwelling	28 976 46		1001
Kenya	42308 	32609		- → 66i 8897	100 ← 100 8797	703 7330 New Phase 1 Dwelling Dwelling	13 ← → 941 690 6389		7018
DRC Kongo Central	88 <i>47</i> 	→ 6845 2002		- 50	1302	→ 165 → 152 New Phase 1 Dwelling Dwelling	2 ← 2 ← 213 1344	81	1534
DRC Kinshasa	10309 	7539		- 2578 - 2578	29	495 A 1743 New Phase 1 Dwelling Dwelling	3 ← → 139 492 1604	2 487 487 1519 285	2006
Burkina Faso	30210 	23050 2160	2790 5790	- 5597	65 €532	337 V 5764 New Phase 1 Dwelling Dwelling	336 336 337 1 393 1 237 1 2393 1 2393 1 2393 1 2393 1 2393 1 2393 1 2393 1 2393 1 2393 1 2393 1 2393 1 2393 1 2393 1 2 2 2 2 2 2 2 2 2 2 2 2 2		5491
	Phase 1 household members	Women aged 15-49 at	Completed all / part of Phase 1 FQ	Consented at Phase 1 to Phase 2 follow-up	Women aged 15-49 at Phase 2	Completed all of the Phase 2 HQ survey	Resident in dwelling	Completed all of the Phase 2 FQ survey	Phase 2

3.1 CHAPTER SETUP

This chapter features a **Wide** longitudinal extract with all 6 of the available samples, including **All Cases** (Respondents and Non-respondents to Household and Female Questionnaires). As mentioned in Chapter 2, both phases are included with each sample when you request a longitudinal extract.

Variables describing sample composition are located under the "Technical" topics heading. Our extract will contain all of the variables in the Technical Variables and Longitudinal Panel subheadings shown:

Once you've finished selecting variables and downloaded an extract, you'll receive two files: an .xml DDI codebook, and a .dat.gz data file. We've saved both of these files in a folder called "data" in our R Working Directory, so we'll load them into R together with the tidyverse and ipumsr packages described in Chapter 1.

```
library(ipumsr)
library(tidyverse)

dat <- read_ipums_micro(
    ddi = "data/pma_00005.xml",
    data = "data/pma_00005.dat.gz"
)</pre>
```

We mentioned in Chapter 1 that variables in a **Wide** extract include a numeric suffix corresponding with a data collection phase. For example, you'll find two versions of SAMPLE: SAMPLE_1 represents the sample codes for Phase 1:

```
dat %>% count(SAMPLE_1)
```

```
# A tibble: 5 × 2
SAMPLE_1
int+lbl>
1 18012 [Congo, Democratic Republic (Kinshasa and Kongo Central) 2019 Baseline] 19245
2 40410 [Kenya 2019 Baseline]
42708
3 56609 [Nigeria (Kano and Lagos) 2019 Baseline]
4 85409 [Burkina Faso 2019 Baseline]
30357
5 NA
98687
```

Whereas SAMPLE_2 represents the sample codes for Phase 2:

```
dat %>% count(SAMPLE_2)
```

# A tibble: 5×2	
SAMPLE_2	n
<int+lbl></int+lbl>	<int></int>
1 18015 [Congo, Democratic Republic (Kinshasa and Kongo Central) 2020 Phase 2	2] 23186
2 40413 [Kenya 2020 Phase 2]	48975
3 56612 [Nigeria (Kano and Lagos) 2020 Phase 2]	13227
4 85412 [Burkina Faso 2021 Phase 2]	33931
5 NA	83678

We also mentioned in Chapter 1 that IPUMS PMA combines sub-nationally representative samples for DRC (Kinshasa and Kongo Central) and Nigeria (Kano and Lagos) with one SAMPLE code each. Here, we'll separate those samples and abbreviate country names. Let's call this variable POP (for "population of interest").

• pop - Population of interest

We'll combine the COUNTRY name for each sample together with the DRC and Nigeria regions labelled in GEOCD and GEONG, respectively.

```
dat <- dat %>%
  mutate(POP = case_when(
    !is.na(GEOCD) ~ paste("DRC -", as_factor(GEOCD)),
    !is.na(GEONG) ~ paste("Nigeria -", as_factor(GEONG)),
    TRUE ~ as_factor(COUNTRY) %>% as.character()
))
```

dat %>% count(POP)

3.2 PHASE 1

Phase 1 marks the beginning of the PMA panel study (baseline). As we've mentioned, it consists of two separate questionnaires administered in stages: first, resident enumerators visited 35 household dwellings selected at random within each sample cluster, or **enumeration area** (EA). If a qualifying respondent was available, they were invited to complete a Household Questionnaire²² including a census of all household members and visitors who stayed there during the night before the interview. If this census included any women aged 15-49, the enumerator would later return to the household and invite each eligible woman to complete a Female Questionnaire²³ and participate in the three-year panel study.

We'll take a look at the inclusion criteria and missing data codes for each questionnaire, in turn.

²²Questionnaires administered in each country may vary from this **Core Household Questionnaire** - click here for details.

²³Questionnaires administered in each country may vary from this **Core Female Questionnaire** - click here for details.

3.2.1 Household Questionnaire

In our **Wide** data extract, each PANELWOMAN is a woman who completed all or part of the Phase 1 Female Questionnaire and agreed to participate in the longitudinal panel study: as a result, you'll find all of her Phase 1 responses and her Phase 2 responses together in *a single row*.

This is *not* the case for household members who are not, themselves, participants in the panel study. These household members are represented by *one row per phase*. For example, if a young child was listed on the Phase 1 Household Questionnaire, you'll find details about their age in AGEHQ_1, their sex in SEX_1, and their relationship to the head of household in RELATE_1. If you look in the same row for corresponding Phase 2 variables (AGEHQ_2, SEX_2, and RELATE_2), you'll find NA values even if the child still lived in the household at Phase 2: their Phase 2 data may be located in another row (with NA values listed for Phase 1), or it may not exist if the child was not listed on the Phase 2 household roster. It is not possible to link Phase 1 and Phase 2 responses for household members who were not participants in the panel study.

This explains why, for example, you'll see a large number of NA values in RESULTHQ_1, which gives the result of the Phase 1 Household Questionnaire.

dat %>% count(RESULTHQ_1)

# /	A ti	.bble: 10 × 2					
RESULTHQ_1 n							
	<ir< td=""><td>it+lbl></td><td><int></int></td></ir<>	it+lbl>	<int></int>				
1	1	[Completed]	103411				
2	2	[Not at home]	210				
3	3	[Postponed]	8				
4	4	[Refused]	230				
5	5	[Partly completed]	47				
6	6	[Vacant or not a dwelling]	95				
7	7	[Destroyed]	10				
8	8	[Not found]	3				
9	9	[Absent extended period]	296				
10	NA		98687				

Close to half of the values in RESULTHQ_1 are NA: these are household members for whom no linked Phase 2 data exists.

What about the other values in RESULTHQ_1? You'll notice a range of outcomes including:

- 1 Completed
- 5 Partly completed
- several other codes giving the reason why no household interview occurred

If no household interview occurred, PMA creates one row to represent the household in RESULTHQ_1. Otherwise, if the household roster was completed during the interview, PMA creates one row for each person on the roster.

In order to determine the proportion of households that completed all or part of the Household Questionnaire - or any other **household-level statistics** - you must count only one row per household. Each Phase 1 household receives a unique identifier in HHID_1 - this value is an empty string "" for household members included only in Phase 2. All Phase 1 households have a unique HHID_1, regardless of the outcome recorded in RESULTHQ_1.

Therefore, you can use group_by to find the RESULTHQ_1 outcome for each household via HHID_1. To obtain the proportion of Phase 1 households that completed all or part of the questionnaire, we'll first use filter to drop Phase 2 households with the value "". Then, we'll use slice to include only the first row in each household. Finally, we'll count the number of fully (code 1) or partly (code 5) completed questionnaires in RESULTHQ_1 - the base R function prop.table derives proportions for these counts.

```
dat %>%
  filter(HHID_1 != "") %>% # drop Phase 2 households
  group_by(HHID_1) %>%
  slice(1) %>% # include only one row per household
  ungroup() %>%
  count(RESULTHQ_1 %in% c(1, 5)) %>%
  mutate(prop = prop.table(n))
```

Across samples, 96.4% of households completed all or part of the Phase 1 Household Questionnaire.

#	A tibble: 2 × 3	3			
"	`RESULTHO 1 %i	-	5)`	n	prop
	<lql></lql>	no c(1)	57		<dbl></dbl>
1	FALSE				0.0365
2	TRUE			22494	0.964

It is also often useful to exclude non-interviewed households when calculating **person-level statistics**. In the first row of our CONSORT diagram above, we drop these households before we count the total number of sampled Phase 1 household members.

Total number of Phase 1 household members, per sample

```
dat %>%
filter(RESULTHQ_1 %in% c(1, 5)) %>%
count(POP)
```

3.2.2 Female Questionnaire

IPUMS PMA uses a **non-response code** labeled "Not interviewed (household questionnaire)" for variables related to questions that were only relevant if the Household Questionnaire was fully or partly completed. This includes ELIGIBLE_1, which indicates whether a particular household member was a woman aged 15-49 at Phase 1, and therefore eligible for the Phase 1 Female Questionnaire. If the household was not interviewed, eligibility for the Female Questionnaire could not be determined.

dat %>% count(RESULTHQ_1, ELIGIBLE_1)

# A tibble: 12 × 3						
	RES	SULTHQ_1	EL]	IGIBLE_1	n	
	<i< td=""><td>nt+lbl></td><td><ir< td=""><td>nt+lbl></td><td><int></int></td></ir<></td></i<>	nt+lbl>	<ir< td=""><td>nt+lbl></td><td><int></int></td></ir<>	nt+lbl>	<int></int>	
1	1	[Completed]	0	[No]	79091	
2	1	[Completed]	1	[Yes, eligible female respondent]	24320	
3	2	[Not at home]	96	[Not interviewed (household questionnaire)]	210	
4	3	[Postponed]	96	[Not interviewed (household questionnaire)]	8	
5	4	[Refused]	96	[Not interviewed (household questionnaire)]	230	
6	5	[Partly completed]	0	[No]	31	
7	5	[Partly completed]	1	[Yes, eligible female respondent]	16	
8	6	[Vacant or not a dwelling]	96	[Not interviewed (household questionnaire)]	95	
9	7	[Destroyed]	96	[Not interviewed (household questionnaire)]	10	
10	8	[Not found]	96	[Not interviewed (household questionnaire)]	3	
11	9	[Absent extended period]	96	[Not interviewed (household questionnaire)]	296	
12	NA		NA		98687	

RESULTLFQ_1 shows the result of the Female Questionnaire for eligible women. The **non-response code** "NIU (not in universe)" is used for household members who were not eligible.

```
dat %>% count(RESULTFQ_1)
```

# A tibble: 9 × 2	
RESULTFQ_1	n
<int+lbl></int+lbl>	<int></int>
1 1 [Completed]	23542
2 2 [Not at home]	427
3 3 [Postponed]	20
4 4 [Refused]	150
5 5 [Partly completed]	49
6 10 [Incapacitated]	145
7 96 [Not interviewed (household questionnaire)]	852
8 99 [NIU (not in universe)]	79124
9 NA	98687

You can calculate the proportion of eligible women who completed the Phase 1 Female Questionnaire like so:

```
dat %>%
filter(ELIGIBLE_1 == 1) %>% # drop if ineligible
count(RESULTFQ_1 %in% c(1, 5)) %>%
mutate(prop = prop.table(n))
```

Our CONSORT diagram shows the total number of women who were eligible to participate in the panel study at Phase 1, after excluding women who:

- were members of a household where no Phase 1 Household Questionnaire was administered
- were not eligible (aged 15-49)
- did not complete at least part of the Phase 1 Female Questionnaire

```
dat %>%
filter(RESULTFQ_1 %in% c(1, 5)) %>%
count(POP)
```

Total number of eligible women, per sample, who completed all or part of the Phase 1 Female Questionnaire

A tibble: 6×2 POP n <chr> <int> 1 Burkina Faso 6790 2 DRC – Kinshasa 2639 3 DRC - Kongo Central 1970 4 Kenya 9558 5 Nigeria – Kano 1127 6 Nigeria – Lagos 1507

Across samples, 96.9% of eligible women completed the Phase 1 Female Questionnaire. Enumerators invited these women to participate in Phase 2 of the panel study one year later. Only women who agreed to participate at that time are considered panel members at Phase 2, as shown in PANELWOMAN_2.²⁴

Their responses to the panel invitation are recorded in SURVEYWILLING_1. IPUMS PMA uses the **non-response code** "Not interviewed (female questionnaire)" to indicate women who were eligible, but not interviewed for the Female Questionnaire as shown in RESULTLFQ_1. Additionally, "No response or missing" is used for women who did not respond to the panel invitation.

Total number of women, per sample, who consented at Phase 1 to the Phase 2 follow-up

```
dat %>%
filter(SURVEYWILLING_1 == 1) %>%
count(POP)
```

```
# A tibble: 6 \times 2
  POP
                          n
  <chr>
                      <int>
1 Burkina Faso
                       6597
2 DRC – Kinshasa
                       2578
3 DRC – Kongo Central 1920
4 Kenya
                       8897
5 Nigeria - Kano
                       1098
6 Nigeria – Lagos
                      1425
```

Make sure to include "No response or missing" cases in the denominator when calculating the proportion of Phase 1 female respondents who agreed to participate in the panel follow-up:

```
dat %>%
filter(RESULTFQ_1 %in% c(1, 5)) %>%
count(SURVEYWILLING_1) %>%
mutate(prop = prop.table(n))
```

#	A t	ibble: 3 × 3		
	SUF	VEYWILLING_1	n	prop
	<ir< td=""><td>it+lbl></td><td><int></int></td><td><dbl></dbl></td></ir<>	it+lbl>	<int></int>	<dbl></dbl>
1	0	[No]	1023	0.0434
2	1	[Yes]	22515	0.954
3	98	[No response or missing]	53	0.00225

Across samples, 95.4% of women who completed the Phase 1 Female Questionnaire agreed to participate in panel follow-ups one year later.

²⁴Women who completed the Phase 1 Female Questionnaire but declined to participate in the panel were given an opportunity to join the panel again at Phase 2 (if eligible). They are not panel members as shown in PANELWOMAN_2, but they may be listed as such in PANELWOMAN_3 if they agree to participation in the panel going forward.

3.3 PHASE 2

Both questionnaires were administered again in Phase 2, approximately one year after Phase 1. Resident enumerators visited the same dwellings where Phase 1 interviews occurred; if the woman's household had moved elsewhere within the study area,²⁵ enumerators used local contacts to find its new location. If found, they administered a Household Questionnaire including an updated household roster.

As we've mentioned, any woman aged 15-49 listed on the Phase 2 household roster was eligible to complete a Phase 2 Female Questionnaire. However, only women who completed all or part of a Phase 1 Female Questionnaire are considered members of the panel in PANELWOMAN_2.

²⁵The "study area" is area within which resident enumerators should attempt to find panel women that have moved out of their Phase 1 dwelling. This may extend beyond the woman's original EA as determined by in-country administrators - see PMA Phase 2 and Phase 3 Survey Protocol for details.

3.3.1 Household Questionnaire

Several variables are available to describe the status of households surveyed at Phase 2. As with Phase 1, RESULTHQ_2 describes the result of the Phase 2 Household Questionnaire.

```
dat %>% count(RESULTHQ_2)
```

# /	A ti	bble: 10 × 2	
	RES	SULTHQ_2	n
	<ir< td=""><td>it+lbl></td><td><int></int></td></ir<>	it+lbl>	<int></int>
1	1	[Completed]	116955
2	2	[Not at home]	298
3	3	[Postponed]	15
4	4	[Refused]	425
5	5	[Partly completed]	16
6	6	[Vacant or not a dwelling]	861
7	7	[Destroyed]	227
8	8	[Not found]	209
9	9	[Absent extended period]	313
10	NA		83678

SAMEDWELLING_2 indicates whether the Household Questionnaire was administered at the same physical dwelling from Phase 1, or whether the enumerator located the woman's household in a new dwelling.

```
dat %>% count(SAMEDWELLING_2)
```

# /	A tibble: 6 × 2	
9	SAMEDWELLING_2	n
<	<int+lbl></int+lbl>	<int></int>
1	0 [No]	7255
2	1 [Yes] 1	110973
3 9	95 [Not interviewed (female questionnaire)]	15
4 9	96 [Not interviewed (household questionnaire)]	19
5 9	99 [NIU (not in universe)]	1057
6 1	A	83678

Each Phase 2 sample may also include new households that were not included in Phase 1, as indicated by HHTYPE_2: these are replacement households drawn for enumeration areas where more than 10% of Phase 1 households were no longer present. They account for all of the **non-response code** shown in SAMEDWELLING_2, as no prior dwelling was sampled.

```
dat %>% count(SAMEDWELLING_2, HHTYPE_2)
```

# A tibble: 6 × 3		
SAMEDWELLING_2	HHTYPE_2	n
<int+lbl></int+lbl>	<int+lbl></int+lbl>	<int></int>
1 0 [No]	3 [Panel woman followup]	7255
2 1 [Yes]	1 [Phase 1 Dwelling]	110973
3 95 [Not interviewed (female questionnaire)]	2 [Replacement cross-section]	15
4 96 [Not interviewed (household questionnaire)]	2 [Replacement cross-section]	19
5 99 [NIU (not in universe)]	2 [Replacement cross-section]	1057
6 NA	NA	83678

As mentioned above, it is not possible to link Phase 1 and Phase 2 records for household members who were not women participating in the panel study. However, the variable HHMEMSTAT_2 does describe whether a Phase 1 household member was listed on the household roster for Phase 2; if not, PMA creates a Phase 2 record for that person indicating whether they moved or were deceased.

```
dat %>% count(HHMEMSTAT_2)
```

```
# A tibble: 10 \times 2
  HHMEMSTAT 2
                                                   n
  <int+lbl>
                                               <int>
                                              84402
1 1 [Still a resident in household]
2 2 [Moved within EA]
                                               1155
3 3 [Moved outside of EA]
                                               4815
4 4 [Moved out of household for school]
                                               1117
5 5 [Deceased]
                                                 437
6 95 [Not interviewed (female questionnaire)] 213
7 96 [Not interviewed (household questionnaire)] 2337
8 97 [Don't know]
                                                  30
9 99 [NIU (not in universe)]
                                               24813
10 NA
                                               83678
```

After excluding women who reached age 50 at Phase 2, our CONSORT diagram diverges to show whether panel members were found in their Phase 1 dwelling or a new one. Women whose household was not found in the study area are considered **lost to follow-up**, as are those where the Phase 2 Household Questionnaire was not completed.

The variable HHPANELP2_2 indicates whether any woman who completed the Phase 1 Female Questionnaire was living in the dwelling at Phase 2. Women who were no longer residents of the household are also considered **lost to follow-up**.

```
dat %>% count(HHPANELP2_2)
```

A tibble: 3 × 2
HHPANELP2_2 n
<int+lbl> <int>
1 0 [No] 29587
2 1 [Yes] 89732
3 NA 83678

3.3.2 Female Questionnaire

Finally, eligible women who were found in a household at Phase 2 were invited to complete a Female Questionnaire. RESULTFQ_2 indicates the result of the Phase 2 Female Questionnaire both for panel members and women who were otherwise eligible to participate.

```
dat %>% count(RESULTFQ_2)
```

# /	A ti	bble: 11 × 2	
	RES	SULTFQ_2	n
	<ir< td=""><td>t+lbl></td><td><int></int></td></ir<>	t+lbl>	<int></int>
1	1	[Completed]	24756
2	2	[Not at home]	343
3	3	[Postponed]	40
4	4	[Refused]	278
5	5	[Partly completed]	24
6	7	[Respondent moved]	57
7	10	[Incapacitated]	241
8	95	[Not interviewed (female questionnaire)]	9
9	96	<pre>[Not interviewed (household questionnaire)]</pre>	2337
10	99	[NIU (not in universe)]	91234
11	NA		83678

You can find the proportion of women who completed the Phase 2 Female Questionnaire that were also available at Phase 1 (i.e. panel members) like so:

```
dat %>%
filter(RESULTFQ_2 == 1) %>%
count(PANELWOMAN_2) %>%
mutate(prop = prop.table(n))
```

A tibble: 2 × 3
PANELWOMAN_2 n prop
<int+lbl> <int> <dbl>
1 0 [No] 6576 0.266
2 1 [Yes] 18180 0.734

Across samples, 73.4% of women completing the Phase 2 Female Questionnaire also did so at Phase 1.

26.6% are newcomers at Phase 2.

Wide data extracts make it particularly easy to combine Phase 1 and Phase 2 variables for the same woman. Note that potential panel members were identified at Phase 1: they are women who agreed to participate in SURVEYWILLING_1 and were under age 49 in AGE_1. In order to calculate the proportion of potential panel members who ultimately completed the Female Questionnaire at Phase 2, you must include Phase 1 female respondents for whom no Phase 2 data exists.

These cases are marked NA in RESULTFQ_2, so they are easily included like so:

```
dat %>%
filter(SURVEYWILLING_1 == 1 & AGE_1 < 49) %>%
count(RESULTFQ_2 == 1) %>%
mutate(prop = prop.table(n))
```

The final row of our CONSORT diagram shows the total number of completed Phase 2 Female Questionnaires for each sample. The totals below match the results reported in each of the PMA User Guides published for individual samples.

```
dat %>%
  group_by(POP) %>%
  filter(SURVEYWILLING 1 == 1 & AGE 1 < 49) %>%
  count(final = RESULTFQ_2 == 1) %>%
  mutate(prop = prop.table(n)) %>%
  filter(final) %>%
  select(-final)
# A tibble: 6 \times 3
# Groups: POP [6]
 POP
                        n prop
  <chr>
                     <int> <dbl>
                     5491 0.841
1 Burkina Faso
2 DRC - Kinshasa 2006 0.787
3 DRC - Kongo Central 1534 0.807
                     7018 0.798
4 Kenya
5 Nigeria - Kano 1001 0.923
6 Nigeria - Lagos 1130 0.808
```

Across samples, 81.7% of potential panel members completed the Phase 2 Female Questionnaire.

Total number and proportion of potential panel members, per Phase 1 sample, that ultimately completed a Phase 2 Female Questionnaire

3.4 SUMMARY

There are ultimately several causes of **loss to follow-up** that may occur at different time points throughout the panel study. An individual is considered **lost to follow-up** if:

- 1. The household moved out of the Phase 1 dwelling, and the new dwelling could not be located within the study area
- 2. The Phase 2 Household Questionnaire was not completed (a respondent refused, was not available, etc)
- 3. A panel member from the household was no longer a resident (deceased, moved, or status unknown)
- 4. A panel member did not complete a Phase 2 Household Questionnaire (she refused, was not available, etc)

At the same time, the **open panel design** allows new participants to complete a Female Questionnaire at any phase. These women are not panel members at Phase 2, but they may become panel members at Phase 3 if they are eligible and agree to complete a forthcoming Phase 3 Female Questionnaire. Women can join the panel at Phase 2, for example, if they:

- 1. Reach age 15 only after Phase 1 interviews were completed
- 2. Move into a household sampled at Phase 2

For more details on sample design, check out the IPUMS PMA sample notes and User Guides published for individual samples at pmadata.org.

4 FAMILY PLANNING INDICATORS

In Chapter 4, we'll demonstrate how to calculate key family planning indicators appearing in the **PMA Longitudinal Brief** for each of the longitudinal samples currently available from IPUMS PMA. The brief for each sample is linked below.

- Burkina Faso
- DRC Kinshasa
- DRC Kongo Central
- Kenya
- Nigeria Kano
- Nigeria Lagos

Chapter 5 includes code you can use to reproduce the **alluvial plots** seen in these briefs.

Indicators calculated in this chapter cover topics like:

- pregnancy intentions and outcomes
- current use of long-acting, short-acting, and traditional contraceptives
- discontinuation of family planning
- intentions for future use of family planning
- unmet need for family planning
- partner's support for use of family planning

As we demonstrate how to calculate these indicators, we will also compare population estimates between subgroups within each sample. This chapter demonstrates how to conduct a **Rao-Scott chi-square test** for significant differences between subgroups, but we will primarily rely on an informal comparison of confidence intervals plotted on **grouped bar charts**. This approach facilitates visual comparisons for several indicators repeated for multiple samples in the same IPUMS PMA data extract, but we'll see that it produces somewhat conservative estimation of statistical difference compared to the chi-square test. We include both the formal and the informal-visual comparison, as each is useful in the appropriate context.

This chapter demonstrates how to build a single function capable of producing several similar bar charts for multiple indicators. To do so, we'll use the ggplot2 package loaded with the tidyverse toolkit for R. If you installed tidyverse in Chapter 1, no additional installation is necessary to use ggplot2. If not, we recommend installing the tidyverse now:

© RStudio, Inc. (MIT)

install.packages("tidyverse")

4.1 CHAPTER SETUP

Chapter 4 features a **Wide** longitudinal extract with all six of the available samples. Unlike Chapter 3, the data extract used in this chapter includes only **Female Respondents**.

> C = nm	a.ipums.org/pma-action/samples	Q 🔲 🗛 Guest
		DG IN REGISTER GLOBAL HEALTH I IPUMS.
JPU	IMS PERFORMANCE MONITORING FOR AC	CTION
	HOME SELECT DATA MY DATA S	
SELECT SAMP	I ES	9920005209204976900537859200553397045969853785920055392449769
SLLLCT SAIVIF	_LJ	
Ariable documentation on t datasets (more information of	he web site can be filtered to display only material correspon on this feature)	nding to chosen
	low datasets for browsing. Please log in to see which sample	es vou are authorized
o include in extracts.		- ,
 Cross-sectional Longitudinal 		SUBMIT SAMPLE SELECTIONS
🔿 Long 🕕		
Wide 1		
FAMILY PLANNING - PERS	ON	
Documentation		
All Samples (wide)		
🗹 Burkina Faso	✓ <u>2020 - 2021</u>	
🗹 Congo (Democratic Rep	ublic) 🗹 <u>2019b - 2020b</u> 🕕	
	✓ <u>2019a - 2020a</u>	
✓ Kenya ✓ Nigeria	 ✓ 2019 - 2020 ✓ 2019b - 2020b ● 	
V Nigeria	✓ 2019b - 2020b ♥ ✓ 2019a - 2020a ❶	
Sample Member		
Sample Member	5	
Female Responder		
	nts and Household Members nts and Female Non-respondents	
	dents and Non-respondents to Household and Female	Questionnaires)
	SUBMIT	SAMPLE SELECTIONS
	SUPPORTED BY: THE BILL & MELINDA GATES FOUNDATION, P	MA, STAT/TRANSFER, AND UNIVERSITY OF MINNESOTA.

Following the steps outlined in Chapter 2, you'll need to request a .dat (fixed-width) data extract with the following variables (preselected variables are included automatically).

- RESULTFQ Result of female questionnaire
- PANELWEIGHT Phase 2 female panel weight
- **RESIDENT** Household residence / membership
- AGE Age in female questionnaire
- PREGNANT Pregnancy status
- BIRTHEVENT Number of birth events
- EDUCATTGEN Highest level of school attended (4 categories)
- MARSTAT Marital status
- GEOCD Province, DRC
- GEONG State, Nigeria
- CP Contraceptive user
- FPCURREFFMETHRC Most effective current FP method
- UNMETYN Total unmet need
- FPPARTSUPPORT Husband / partner would be supportive of FP use
- FPPLANVAL When will start using FP method in the future value
- FPPLANWHEN When will start using FP method in the future unit
- COUNTRY PMA country (preselected)
- EAID Enumeration area (preselected)

Download and save your extract in the "data" sub-folder of your R working directory, and then load the following packages together with your extract.

```
library(tidyverse)
library(ipumsr)
library(srvyr)

dat <- read_ipums_micro(
   ddi = "data/pma_00006.xml",
   data = "data/pma_00006.dat.gz"
)</pre>
```

Chapter 1 describes **Inclusion Criteria for Analysis**: to summarise, we'll be focusing on members of the *de facto* population who participated in both phases of the panel study (excluding a small number of women marked "NIU (not in universe)" for a key measure of current contraceptive use recorded in CP).

```
dat <- dat %>%
filter(
    RESIDENT_1 %in% c(11, 22) & RESIDENT_2 %in% c(11, 22),
    RESULTFQ_2 == 1,
    CP_1 < 90 & CP_2 < 90
)</pre>
```

Recall that only the Burkina Faso and Kenya samples are **nationally representative**. Samples from DRC represent regions identified by GEOCD, while samples from Nigeria represent regions identified by GEONG. In order to distinguish each population of interest, we'll again define a custom variable POP that shows each sample's COUNTRY label concatenated with each of these regions where appropriate.

• POP - Population of interest

```
dat <- dat %>%
  mutate(POP = case_when(
    !is.na(GEOCD) ~ paste("DRC -", as_factor(GEOCD)),
    !is.na(GEONG) ~ paste("Nigeria -", as_factor(GEONG)),
    TRUE ~ as_factor(COUNTRY) %>% as.character()
))
```

We'll be using survey design information to derive population estimates throughout this chapter, so we'll also need to use GEOCD to update STRATA_1 for DRC samples. As in Chapter 1, we create STRATARC using unique numeric codes from STRATA_1, except that we also include unique identifiers for each sampled region in GEOCD.

• STRATARC - Numeric codes for PMA sample strata (recoded for DRC samples)

```
dat <- dat %>%
  mutate(
    STRATARC = if_else(
        is.na(GEOCD),
        zap_labels(STRATA_1),
        zap_labels(GEOCD)
    )
)
```

Finally, Chapter 1 demonstrates how to use survey design information to estimate the proportion of women in each population POP who were using a contraceptive method both at Phase 1 and at Phase 2. Let's revisit that example again, expect that we'll now estimate the proportion of users and non-users alike:

```
cp_tbl <- dat %>%
group_by(POP) %>%
summarise(
   cur_data() %>%
    as_survey_design(weight = PANELWEIGHT, id = EAID_1, strata = STRATARC) %>%
    group_by(CP_1, CP_2) %>%
    summarise(survey_mean(vartype = "ci", prop = TRUE, prop_method = "logit"))
)
```

cp_tbl

# A tibble: 24×6								
# Groups: POP [6]								
POP		CF	2_1	CF	2_2	coef	`_low`	`_upp`
<chr></chr>		<j< td=""><td>nt+lbl></td><td><j< td=""><td>.nt+lbl></td><td><dbl></dbl></td><td><dbl></dbl></td><td><dbl></dbl></td></j<></td></j<>	nt+lbl>	<j< td=""><td>.nt+lbl></td><td><dbl></dbl></td><td><dbl></dbl></td><td><dbl></dbl></td></j<>	.nt+lbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1 Burkin	a Faso	0	[No]	0	[No]	0.790	0.763	0.815
2 Burkin	a Faso	0	[No]	1	[Yes]	0.210	0.185	0.237
3 Burkin	a Faso	1	[Yes]	0	[No]	0.347	0.306	0.391
4 Burkin	a Faso	1	[Yes]	1	[Yes]	0.653	0.609	0.694
5 DRC – I	Kinshasa	0	[No]	0	[No]	0.739	0.685	0.787
6 DRC – I	Kinshasa	0	[No]	1	[Yes]	0.261	0.213	0.315
7 DRC – I	Kinshasa	1	[Yes]	0	[No]	0.275	0.239	0.314
8 DRC – I	Kinshasa	1	[Yes]	1	[Yes]	0.725	0.686	0.761
9 DRC – I	Kongo Central	0	[No]	0	[No]	0.736	0.685	0.782
10 DRC -	Kongo Central	0	[No]	1	[Yes]	0.264	0.218	0.315
11 DRC -	Kongo Central	1	[Yes]	0	[No]	0.270	0.207	0.343
12 DRC -	Kongo Central	1	[Yes]	1	[Yes]	0.730	0.657	0.793
13 Kenya		0	[No]	0	[No]	0.697	0.676	0.717
14 Kenya		0	[No]	1	[Yes]	0.303	0.283	0.324
15 Kenya		1	[Yes]	0	[No]	0.200	0.183	0.217
16 Kenya		1	[Yes]	1	[Yes]	0.800	0.783	0.817
17 Nigeri	a – Kano	0	[No]	0	[No]	0.946	0.910	0.968
18 Nigeri	a – Kano	0	[No]	1	[Yes]	0.0544	0.0321	0.0905
19 Nigeri	a – Kano	1	[Yes]	0	[No]	0.440	0.308	0.581
20 Nigeri	a – Kano	1	[Yes]	1	[Yes]	0.560	0.419	0.692
21 Nigeri	a — Lagos	0	[No]	0	[No]	0.757	0.713	0.796
22 Nigeri	a - Lagos	0	[No]	1	[Yes]	0.243	0.204	0.287
23 Nigeri	a — Lagos	1	[Yes]	0	[No]	0.240	0.196	0.290
24 Nigeri	a — Lagos	1	[Yes]	1	[Yes]	0.760	0.710	0.804

This table cp_tbl shows a population estimate for each row reported in the column _coef, while the columns _low and _upp report the limits of a 95% confidence interval. Comparing these confidence intervals gives us an informal, conservative way to test for a significant difference between outcomes for each POP: if the intervals for any pair of outcomes in the same sample include no common values, we'll say that a significant difference exists.

You may change the confidence interval to, for example, 99% by setting level = 0.99 in survey_mean.

Formal testing may also reveal significant differences between pairs of outcomes where these intervals overlap only slightly. This informal comparison is well suited for data visualization, but it should not replace formal testing. Fortunately, you can adapt this code to replace (or complement) the output from survey_mean with a formal test.

4.2 SIGNIFICANCE TEST

Continuing with the previous example, we will now demonstrate how to calculate a Rao-Scott chi-square test for significant differences between the estimated population proportions for each POP and the proportions we would *expect* to observe if Phase 2 outcomes were statistically independent from Phase 1 conditions.²⁶ Because we're interested in just one summary statistic per sample, we no longer need to group_by CP_1 and CP_2; instead, we'll use the formula ~CP_1 + CP_2 in the function svychisq. Elements of the chi-square test can be extracted rowwise like so:

```
dat %>%
  group by(POP) %>%
  summarise(
   cur data() %>%
     as survey design(weight = PANELWEIGHT, id = EAID 1, strata = STRATARC) %>%
     summarise(rao = svychisg(~CP 1 + CP 2, design = .) %>% list)
  ) %>%
  rowwise() %>%
  mutate(`F` = rao$statistic, p.value = rao$p.value, sig95 = p.value < 0.05)</pre>
# A tibble: 6 \times 5
# Rowwise:
 POP
                   rao F p.value sig95
                   <chr>
1 Burkina Faso
                   <htest> 468. 4.62e- 50 TRUE
2 DRC – Kinshasa
                  <htest> 216. 4.80e- 21 TRUE
3 DRC - Kongo Central <htest> 123. 9.43e- 16 TRUE
                  <htest> 1140. 8.58e-102 TRUE
4 Kenva
5 Nigeria - Kano <htest> 89.2 2.23e- 9 TRUE
6 Nigeria - Lagos <htest> 204. 2.85e- 19 TRUE
```

For each POP, the p.value associated with our test falls below 0.05 (as indicated in sig95). This suggests that we may be at least 95% sure that the mean Phase 2 contraceptive use status for Phase 1 contraceptive users is not identical to the mean for non-users.

²⁶The Rao-Scott second-order correction to Pearson's chi-square test is used to incorporate survey design information from as_survey_design. Wald-type chi-square tests are also available: see svychisq for details.

4.3 DATA VISUALIZATION

We'll use simple **grouped bar charts** to show population estimates for each proportion calculated throughout the remainder of this chapter. We'll also include **error bars** representing a 95% confidence interval for each proportion.

For example, let's plot the estimates created in cp_tbl above. As a preliminary step, we'll recode CP_1 and CP_2 with as_factor and sort their levels with fct_relevel. This ensures that the *value labels* for each variable will be printed on our plot.

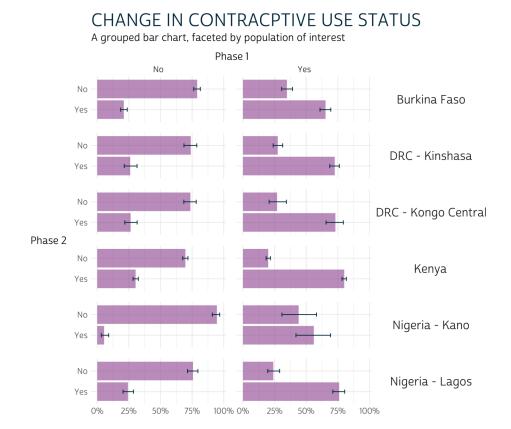
```
cp_tbl <- cp_tbl %>%
mutate(
    across(
        c(CP_1, CP_2),
        ~.x %>% as_factor() %>% fct_relevel("No", "Yes")
    )
)
```

Next, we'll use ggplot2 to build the plot. One of the powerful features of ggplot2 is that you can use pre-built themes to customize this baseline layout. We'll build on theme_minimal to create our own theme_pma.²⁷

Because we'll be constructing the same type of plot for each indicator, we'll wrap this theme together with several ggplot2 functions we'll want to reuse every time we make a plot. This prevents copy/paste errors and eliminates redundant code. We'll call our custom function pma_bars.

²⁷This manual uses the proprietary font cabrito sans, which is implemented in figures via the showtext package for R. You can purchase a license to use cabrito sans, or substitute with a font of your choice.

We'll design pma_bars to include all of the following ggplot2 functions:


- theme_pma created above
- labs for plot labels (passed from function arguments)
- scale_x_continuous formatting for continuous x-axis labels
- scale_y_discrete formatting for discrete y-axis labels
- geom_bar for grouped bars
- geom_errorbar for error bars
- scales::label_percent to format proportions as percentages²⁸

```
pma bars <- function(</pre>
 title = NULL,  # an optional title
 subtitle = NULL, # an optional subtitle
 xaxis = NULL,  # an optional label for the x-axis (displayed above)
 yaxis = NULL
                 # an optional label for the y-axis (displayed left)
){
 components <- list(</pre>
   theme_pma,
   labs(
     title = toupper(title),
     subtitle = subtitle,
     y = str_wrap(yaxis, 10),
     x = NULL,
     fill = NULL
   ).
    scale_x_continuous(
      position = 'bottom',
      sec.axis = sec_axis(trans = ~., name = xaxis, breaks = NULL),
     labels = scales::label_percent()
    ),
    scale_y_discrete(limits = rev),
    geom_bar(stat = "identity", fill = "#98579BB0"),
    geom_errorbar(
      aes(xmin = `_low`, xmax = `_upp`),
     width = 0.2,
     color = "#00263A"
   )
 )
}
```

²⁸scales is installed, but not loaded, with the tidyverse.

Going forward, we'll incorporate pma_bars together with a ggplot and facet function for a given set of variables like so:

```
cp_tbl %>%
ggplot(aes(x = coef, y = CP_2)) +
facet_grid(rows = vars(POP), cols = vars(CP_1)) +
pma_bars(
   title = "Change in Contracptive Use Status",
   subtitle = "A grouped bar chart, faceted by population of interest",
   xaxis = "Phase 1",
   yaxis = "Phase 2"
)
```


4.4 CONTRACEPTIVE USE OR NON-USE

Let's continue our examination of CP. In the PMA reports for each sample linked above, you'll notice that women who were pregnant at either phase are distinguished from women who reported use or non-use in CP_1 or CP_2. We'll identify these women in the variable PREGNANT, and then we'll create a combined indicator called FPSTATUS.

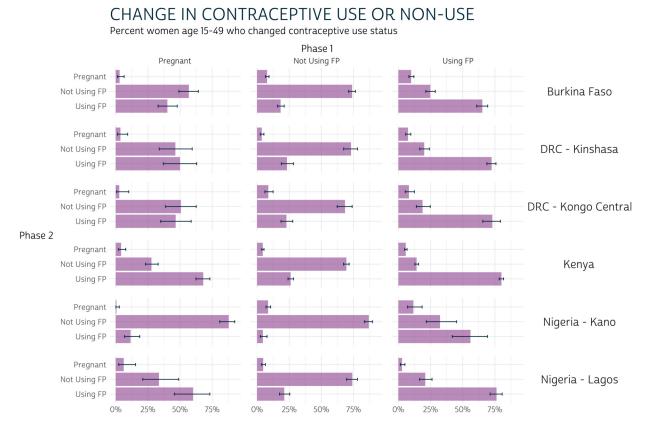
• FPSTATUS - Pregnant, using contraception, or using no contraception

```
dat <- dat %>%
  mutate(
   FPSTATUS 1 = case when(
      PREGNANT 1 == 1 \sim "Pregnant",
     CP_1 == 1 ~ "Using FP",
     CP 1 == 0 ~ "Not Using FP"
    ),
    FPSTATUS 2 = case when(
      PREGNANT 2 == 1 \sim "Pregnant",
     CP 2 == 1 \sim "Using FP",
     CP 2 == 0 ~ "Not Using FP"
   ),
    across(
      c(FPSTATUS 1, FPSTATUS 2),
     ~.x %>% fct_relevel("Pregnant", "Not Using FP", "Using FP")
   )
  )
```

We'll now revise cp_tbl to include information from FPSTATUS_1 and FPSTATUS_2. This will help us answer key questions like:

- Are women who were pregnant at Phase 1 more likely to use or not use family planning at Phase 2?
- Are women who were using (or not using) contraception at Phase 1 likely to maintain the same status at Phase 2?

```
cp_tbl <- dat %>%
group_by(POP) %>%
summarise(
   cur_data() %>%
    as_survey_design(weight = PANELWEIGHT, id = EAID_1, strata = STRATARC) %>%
    group_by(FPSTATUS_1, FPSTATUS_2) %>%
    summarise(survey_mean(vartype = "ci", prop = TRUE, prop_method = "logit"))
)
```


This new version of cp_tbl includes the labels we assigned to FPSTATUS_1 and FPSTATUS_2. The first dozen rows are shown below.

cp_tbl

```
# A tibble: 54 × 6
# Groups: POP [6]
  POP
           FPSTATUS_1 FPSTATUS_2 coef `_low` `_upp`
               <fct>
  <chr>
                         <fct>
                                     <dbl> <dbl> <dbl>
1 Burkina Faso Pregnant Pregnant 0.0302 0.0137 0.0652
2 Burkina Faso Pregnant Not Using FP 0.568 0.491 0.642
3 Burkina Faso Pregnant Using FP 0.401 0.329 0.478
4 Burkina Faso Not Using FP Pregnant
                                    0.0779 0.0651 0.0929
5 Burkina Faso Not Using FP Not Using FP 0.739 0.711 0.765
6 Burkina Faso Not Using FP Using FP 0.183 0.158 0.211
7 Burkina Faso Using FP
                          Pregnant
                                    0.0993 0.0815 0.121
8 Burkina Faso Using FP
                          Not Using FP 0.248 0.213 0.287
                          Using FP 0.653 0.609 0.694
9 Burkina Faso Using FP
10 DRC – Kinshasa Pregnant
                         Pregnant 0.0367 0.0140 0.0930
11 DRC – Kinshasa Pregnant
                         Not Using FP 0.464 0.338 0.594
12 DRC – Kinshasa Pregnant
                         Using FP 0.500 0.370 0.629
# ... with 42 more rows
```

Next, we'll plot cp_tbl with pma_bars.

```
cp_tbl %>%
ggplot(aes(x = coef, y = FPSTATUS_2)) +
facet_grid(cols = vars(FPSTATUS_1), rows = vars(POP)) +
pma_bars(
    "CHANGE IN CONTRACEPTIVE USE OR NON-USE",
    "Percent women age 15-49 who changed contraceptive use status",
    xaxis = "Phase 1",
    yaxis = "Phase 2"
)
```


To reiterate: comparing the error bars within each of these 18 panels gives us a informal, but conservative test for significant difference. We'll say that a significant difference occurs where two pairs of error bars **do not overlap** (but additional testing may be necessary to determine whether a significant difference occurs where error bars overlap only slightly). A few observations:

- For women who were pregnant at Phase 1, there is usually no apparent difference between using and not using family planning at Phase 2. Kenya and Nigeria - Kano are the exception: in Kenya, pregnant women at Phase 1 were appear more likely to be using FP at Phase 2, while the opposite is true in Kano.
- Overall, non-pregnant women at Phase 1 appeared more likely to maintain the same status (use or non-use) at Phase 2 than they were to switch or become pregnant.

4.5 CONTRACEPTIVE METHOD TYPE

PMA surveys also ask contraceptive users to indicate which method they are currently using at each phase of the study. If a woman reports using more than one method, FPCURREFFMETH shows her most *effective* currently used method. These responses are combined with detailed information about use of the lactational amenorrhea method (LAM), emergency contraception, or injectable type in FPCURREFFMETHRC. PMA reports use FPCURREFFMETHRC to determine whether each woman's most effective current method is a short-acting, long-acting, or traditional method.

Long-acting methods include:

- intrauterine devices (IUDs)
- implants
- male sterilization
- female sterilization

Short-acting methods include:

- injectables (intramuscular and subcutaneous)
- the pill
- emergency contraception
- male condoms
- female condoms
- lactation amenorrhea method (LAM)
- diaphragm
- foam/jelly
- standard days method

Traditional methods include:

- rhythm
- withdrawal
- other traditional

Women who were using no method are "NIU (not in universe)".

dat %>% count(FPCURREFFMETHRC_1)

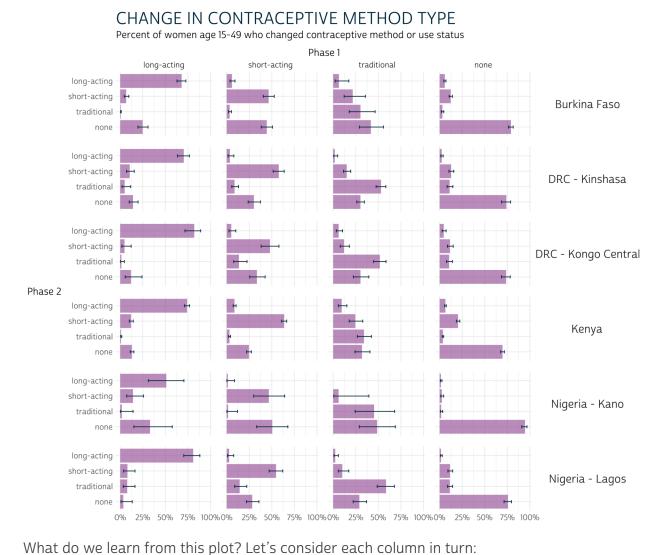
# /	A tik	bble: 19 × 2	
	FPCL	JRREFFMETHRC_1	n
	<int< td=""><td>:+lbl></td><td><int></int></td></int<>	:+lbl>	<int></int>
1	101	[Female Sterilization]	198
2	102	[Male Sterilization]	1
3	111	[Implants]	2248
4	112	[IUD]	226
5	121	[Injectables (3 months)]	1412
6	123	[Injectables (Sayana Press)]	296
7	131	[Pill]	547
8	132	[Emergency Contraception]	243
9	141	[Male condom]	791
10	142	[Female condom]	1
11	151	[Diaphragm]	1
12	152	[Foam]	1
13	160	[Standard Days/Cycle Beads Method]	70
14	170	[Lactational amenorrhea method (LAM)]	24
15	210	[Rhythm]	569
16	220	[Withdrawal]	351
17	240	[Other traditional]	153
18	998	[No response or missing]	1
19	999	[NIU (not in universe)]	10572

We'll use across to recode the Phase 1 and Phase 2 versions of FPCURREFFMETHRC simultaneously. We'll also attach the prefix CAT to each variable, indicating that we've created "categorized" versions of each.

• CAT_FPCURREFFMETHRC - Contraceptive method type (4 categories)

```
dat <- dat %>%
  mutate(
    across(
        c(FPCURREFFMETHRC_1, FPCURREFFMETHRC_2),
        ~case_when(
            .x < 120 ~ "long-acting",
            .x < 200 ~ "short-acting",
            .x < 900 ~ "traditional",
            TRUE ~ "none") %>%
            fct_relevel( "long-acting", "short-acting", "traditional", "none"),
            .names = "CAT_{.col}"
        )
        )
```

Next, we'll generate population estimates for our derived variables, CAT_FPCURREFFMETHRC_1 and CAT_FPCURREFFMETHRC_2.


```
meth_tbl <- dat %>%
group_by(POP) %>%
summarise(
   cur_data() %>%
    as_survey_design(weight = PANELWEIGHT, id = EAID_1, strata = STRATARC) %>%
    group_by(CAT_FPCURREFFMETHRC_1, CAT_FPCURREFFMETHRC_2) %>%
    summarise(survey_mean(vartype = "ci", prop = TRUE, prop_method = "logit"))
)
```

meth_tbl

# A tibble: 95 × 6				
# Groups: POP [6]				
POP CAT_FPCURREFFMETHRC_1	CAT_FPCURREFFMETHRC_2	coef	`_low`	`_upp`
<chr> <fct></fct></chr>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1 Burkina Faso long-acting	long-acting	0.680	0.629	0.727
2 Burkina Faso long–acting	short-acting	0.0658	0.0448	0.0955
3 Burkina Faso long-acting	traditional	0.00611	0.00325	0.0115
4 Burkina Faso long-acting	none	0.248	0.196	0.308
5 Burkina Faso short-acting	long-acting	0.0584	0.0367	0.0917
6 Burkina Faso short-acting	short-acting	0.465	0.405	0.526
7 Burkina Faso short-acting	traditional	0.0328	0.0205	0.0519
8 Burkina Faso short-acting	none	0.444	0.382	0.507
9 Burkina Faso traditional	long-acting	0.0635	0.0215	0.174
10 Burkina Faso traditional	short-acting	0.217	0.121	0.357
11 Burkina Faso traditional	traditional	0.302	0.178	0.464
12 Burkina Faso traditional	none	0.418	0.289	0.558
# with 83 more rows				

And, we'll again use pma_bars to plot the results.

```
meth_tbl %>%
ggplot(aes(x = coef, y = CAT_FPCURREFFMETHRC_2)) +
facet_grid(cols = vars(CAT_FPCURREFFMETHRC_1), rows = vars(POP)) +
pma_bars(
    "CHANGE IN CONTRACEPTIVE METHOD TYPE",
    "Percent of women age 15-49 who changed contraceptive method or use status",
    xaxis = "Phase 1",
    yaxis = "Phase 2"
)
```


- Users of "long-acting" methods at Phase 1 appear more likely to have used "longacting" methods at Phase 2 than to have changed status (except perhaps in Kano, where the intervals for "long-acting" and "none" overlap at Phase 2).
- Users of "short-acting" methods at Phase 1 appeared generally likely to use them again at Phase 2, but some samples show that women are equally likely to be using "none" at Phase 2. A difference between these two outcomes is visually apparent only in Kinshasa, Kenya, and Lagos (where women were more likely to be using "short-acting" methods than "none").
- The status of Phase 1 "traditional" users is generally unclear at Phase 2. In Kinshasa, Kongo Central, and Lagos, these women seem most likely to remain "traditional" users at Phase 2. Elsewhere, there are no clear trends.
- Users of "none" at Phase 1 were clearly most likely to remain as such at Phase 2.

4.6 CONTRACEPTIVE DYNAMICS BY SUBGROUP

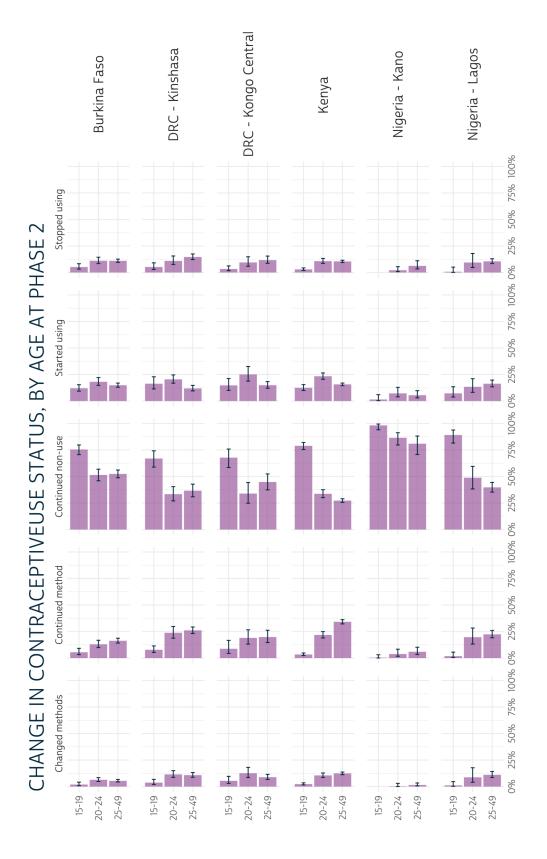
We can also use FPCURREFFMETHRC to see whether women switched methods, stopped using any method, started using any method, or made no changes. Let's summarize this information as CHG_FPCURR:

• CHG_FPCURR - Change in contraceptive use between Phase 1 and Phase 2

```
dat <- dat %>%
mutate(
    CHG_FPCURR = case_when(
        FPCURREFFMETHRC_1 > 900 & FPCURREFFMETHRC_2 > 900 ~ "Continued non-use",
        FPCURREFFMETHRC_1 > 900 ~ "Started using",
        FPCURREFFMETHRC_2 > 900 ~ "Stopped using",
        FPCURREFFMETHRC_1 != FPCURREFFMETHRC_2 ~ "Changed methods",
        FPCURREFFMETHRC_1 == FPCURREFFMETHRC_2 ~ "Continued method"
    )
    )
```

PMA reports disaggregate the outcomes captured in CHG_FPCURR by age, marital status, education level, and parity (number of live childbirths).

4.6.1 Age


We'll use PMA's categorization of AGE_2 to examine differences between women in three categories.

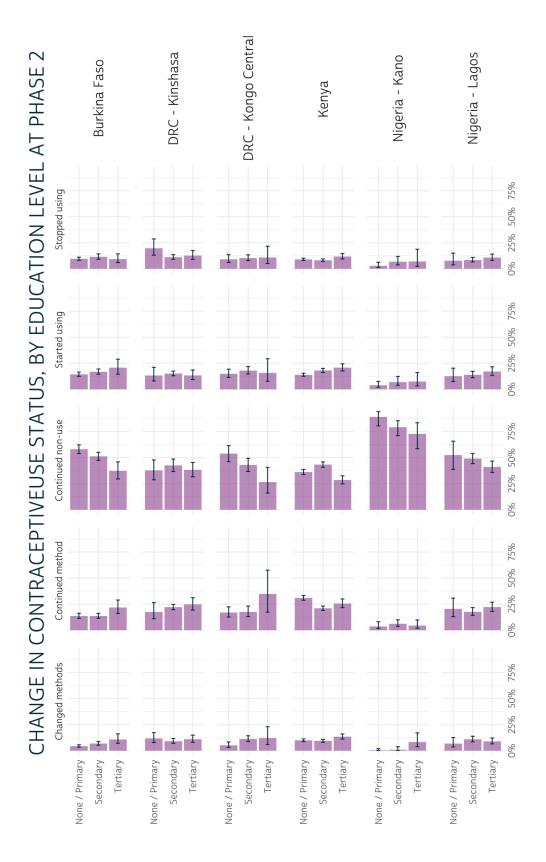
• CAT_AGE_2 - Phase 2 age (3 categories)

```
dat <- dat %>%
  mutate(
    CAT_AGE_2 = case_when(
        AGE_2 < 20 ~ "15-19",
        AGE_2 < 25 ~ "20-24",
        TRUE ~ "25-49"
    )
)</pre>
```

Plotting CAT_AGE_2 on the y-axis allows us to compare confidence intervals across age groups. For example, notice that women aged 15-19 in every population seem more likely to continue non-use than women who are aged 20-24 or 25-49 (column 3).

```
dat %>%
group_by(POP) %>%
summarise(
   cur_data() %>%
    as_survey_design(weight = PANELWEIGHT, id = EAID_1, strata = STRATARC) %>%
    group_by(CAT_AGE_2, CHG_FPCURR) %>%
    summarise(survey_mean(vartype = "ci", prop = TRUE, prop_method = "logit"))
) %>%
ggplot(aes(x = coef, y = CAT_AGE_2)) +
facet_grid(cols = vars(CHG_FPCURR), rows = vars(POP)) +
pma_bars("CHANGE IN CONTRACEPTIVEUSE STATUS, BY AGE AT PHASE 2")
```


4.6.2 Education level


The variable EDUCATTGEN standardizes educational categories across countries (see EDUCATT for country-specific codes). To match PMA reports, we'll recode EDUCATTGEN into just three groups:

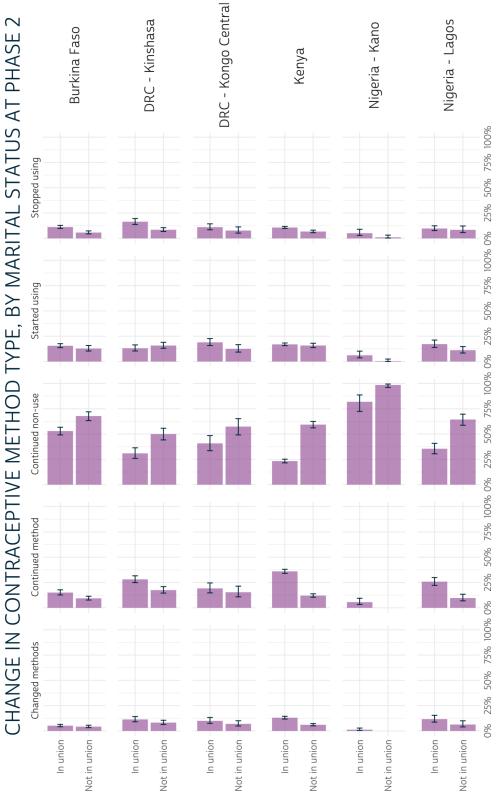
• CAT_EDUCATTGEN_2 - Phase 2 education level (3 categories)

```
dat <- dat %>%
  mutate(
    CAT_EDUCATTGEN_2 = case_when(
    EDUCATTGEN_2 < 3 ~ "None / Primary",
    EDUCATTGEN_2 == 3 ~ "Secondary",
    EDUCATTGEN_2 == 4 ~ "Tertiary"
    )
)</pre>
```

As with age, we'll plot CAT_EDUCATTGEN_2 on the y-axis. There aren't many clear takeaways here: confidence intervals overlap in each column for almost every education level, so visual inspection reveals no clear significant differences:

```
dat %>%
filter(EDUCATTGEN_2 < 90) %>% # drop if missing
group_by(POP) %>%
summarise(
    cur_data() %>%
    as_survey_design(weight = PANELWEIGHT, id = EAID_1, strata = STRATARC) %>%
    group_by(CAT_EDUCATTGEN_2, CHG_FPCURR) %>%
    summarise(survey_mean(vartype = "ci", prop = TRUE, prop_method = "logit"))
) %>%
ggplot(aes(x = coef, y = CAT_EDUCATTGEN_2)) +
facet_grid(cols = vars(CHG_FPCURR), rows = vars(POP)) +
pma_bars("CHANGE IN CONTRACEPTIVEUSE STATUS, BY EDUCATION LEVEL AT PHASE 2")
```


4.6.3 Marital status


The variable MARSTAT indicates each woman's marital / partnership status. PMA considers women "in union" to be those who are currently married (code 21) or currently living with their partner (code 22). Otherwise, women who were never married, divorced / separated, or widowed are considered "not in union".

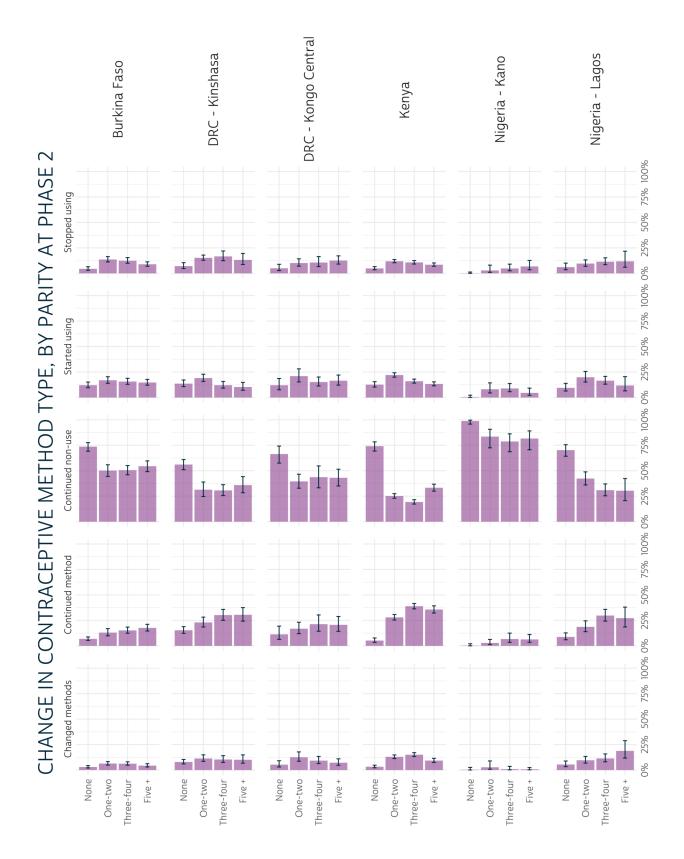
• CAT_MARSTAT_2 - Phase 2 marital status (2 categories)

```
dat <- dat %>%
  mutate(
    CAT_MARSTAT_2 = case_when(
        MARSTAT_2 %in% 21:22 ~ "In union",
        TRUE ~ "Not in union"
    )
)
```

Here, we see that women who were *not* in a union at Phase 2 were significantly more likely to continue non-use of contraception compared to married / partnered women in each population. On the other hand, women who *were* in a union mainly appeared more likely to continue using the same method, or perhaps to change methods (most clearly in Kenya).

```
dat %>%
group_by(POP) %>%
summarise(
   cur_data() %>%
    as_survey_design(weight = PANELWEIGHT, id = EAID_1, strata = STRATARC) %>%
    group_by(CAT_MARSTAT_2, CHG_FPCURR) %>%
    summarise(survey_mean(vartype = "ci", prop = TRUE, prop_method = "logit"))
) %>%
ggplot(aes(x = coef, y = CAT_MARSTAT_2)) +
facet_grid(cols = vars(CHG_FPCURR), rows = vars(POP)) +
pma_bars("CHANGE IN CONTRACEPTIVE METHOD TYPE, BY MARITAL STATUS AT PHASE 2")
```


4.6.4 Parity


Parity refers to the number of times a women has given live birth (excluding stillbirths). This information is recorded in the IPUMS variable BIRTHEVENT, in which the values 0 and 99 (not in universe) can both be interpreted as "none".

• CAT_BIRTHEVENT_2 - Phase 2 number of live births (4 categories)

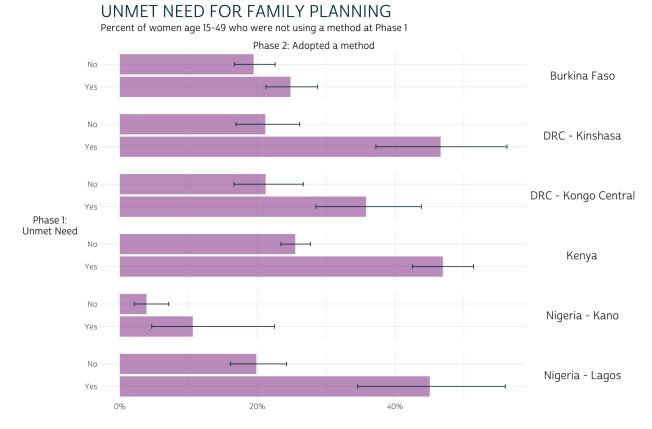
```
dat <- dat %>%
mutate(
    CAT_BIRTHEVENT_2 = case_when(
        BIRTHEVENT_2 %in% c(0, 99) ~ "None",
        BIRTHEVENT_2 %in% c(1, 2) ~ "One-two",
        BIRTHEVENT_2 %in% c(3, 4) ~ "Three-four",
        BIRTHEVENT_2 >= 5 ~ "Five +") %>%
        fct_relevel("None", "One-two", "Three-four", "Five +")
)
```

There are few clear patterns related to parity, except that women who have never given birth are also more likely to continue non-use of contraception between phases.

```
dat %>%
filter(BIRTHEVENT_2 != 98) %>% # drops 2 missing cases (code 98)
group_by(POP) %>%
summarise(
    cur_data() %>%
    as_survey_design(weight = PANELWEIGHT, id = EAID_1, strata = STRATARC) %>%
    group_by(CAT_BIRTHEVENT_2, CHG_FPCURR) %>%
    summarise(survey_mean(vartype = "ci", prop = TRUE, prop_method = "logit"))) %>%
ggplot(aes(x = coef, y = CAT_BIRTHEVENT_2)) +
facet_grid(cols = vars(CHG_FPCURR), rows = vars(POP)) +
pma_bars("CHANGE IN CONTRACEPTIVE METHOD TYPE, BY PARITY AT PHASE 2")
```


4.7 OUTCOMES FOR PHASE 1 NON-USERS

The final page in each PMA report covers family planning dynamics related to unmet need, partner support, and plans for future use of family planning methods. In each case, we'll be focusing on women who were *not* using any method at Phase 1. We'll show how each of these dynamics impacts the likelihood that Phase 1 non-users would have adopted any family planning method at Phase 2.

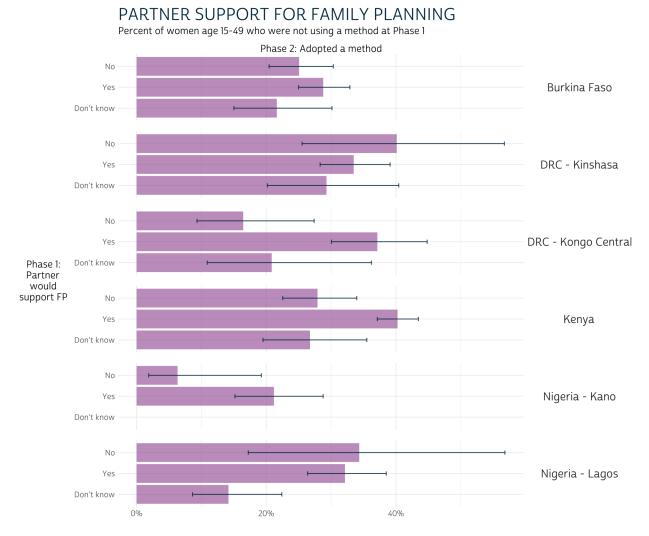

dat <- dat %>% filter(CP_1 == 0)

4.7.1 Unmet need

PMA defines unmet need for family planning according to each woman's fertility preferences, current use of family planning methods, and risk factors for pregnancy. Women may have "unmet need" for birth spacing (e.g. pregnant women whose pregnancy was mistimed) or for limiting births (e.g. pregnant women whose pregnancy was unwanted), while women are considered "not at risk" if they are not sexually active or cannot become pregnant. The variable UNMETNEED provides detailed information on types of need for each woman, and on related variables that were used to calculate unmet need.

The binary variable UNMETYN recodes UNMETNEED as either "Unmet need", or "No unmet need". We'll reword these labels only slightly to minimize the amount of repeated text on our plot:

```
dat %>%
 mutate(UNMETYN 1 = if else(UNMETYN 1 == 1, "Yes", "No")) %>%
 group by(POP) %>%
 summarise(
   cur data() %>%
      as_survey_design(weight = PANELWEIGHT, id = EAID_1, strata = STRATARC) %>%
      group by(UNMETYN 1, CP 2) %>%
      summarise(survey_mean(vartype = "ci", prop = TRUE, prop_method = "logit"))
 ) %>%
 filter(CP 2 == 1) %>%
 ggplot(aes(x = coef, y = UNMETYN_1)) +
 facet grid(rows = vars(POP)) +
 pma bars(
   "UNMET NEED FOR FAMILY PLANNING",
   "Percent of women age 15-49 who were not using a method at Phase 1",
   xaxis = "Phase 2: Adopted a method",
   yaxis = "Phase 1: Unmet Need"
 )
```



Overall, these results suggest that non-users with unmet need for family planning at Phase 1 were more likely to adopt a method at Phase 2 compared to non-users who had none (e.g. women who were not sexually active, could not become pregnant, etc.). However, formal testing is needed to determine whether these trends were statistically significant in Burkina Faso and Nigeria - Kano.

4.7.2 Partner support

Women who were not using family planning and not pregnant at Phase 1 were asked whether they thought their husband / partner would be supportive of use of family planning in the future. These results are recorded in FPPARTSUPPORT. We'll exclude non-partnered women here, as they are "NIU (not in universe)".

```
dat %>%
  filter(FPPARTSUPPORT_1 %in% c(0, 1, 97)) %>%
  mutate(FPPARTSUPPORT 1 = FPPARTSUPPORT 1 %>% as factor) %>%
  group by(POP) %>%
  summarise(
    cur data() %>%
      as_survey_design(weight = PANELWEIGHT, id = EAID_1, strata = STRATARC) %>%
      group_by(FPPARTSUPPORT_1, CP_2) %>%
      summarise(survey_mean(vartype = "ci", prop = TRUE, prop_method = "logit"))
  ) %>%
  filter(CP_2 == 1) %>%
  ggplot(aes(x = coef, y = FPPARTSUPPORT_1)) +
  facet_grid(rows = vars(POP)) +
  pma bars(
   "PARTNER SUPPORT FOR FAMILY PLANNING",
    "Percent of women age 15-49 who were not using a method at Phase 1",
   xaxis = "Phase 2: Adopted a method",
   yaxis = "Phase 1: Partner would support FP"
  )
```


We've included responses for women who were unsure whether their partner would or would not support future use of FP ("Don't know"), but Phase 2 outcomes for these women were usually not visually distinct from those who answered "Yes" or "No". Formal testing is needed to determine whether any significant differences exist.

Setting aside women who answered "Don't know", women with Phase 1 partner support in DRC - Kongo Central and Kenya ("Yes") were more likely to adopt a method than those without ("No"). Outcomes for women in other populations are not visibly different based on partner support, one way or the other (again, formal testing may prove otherwise).

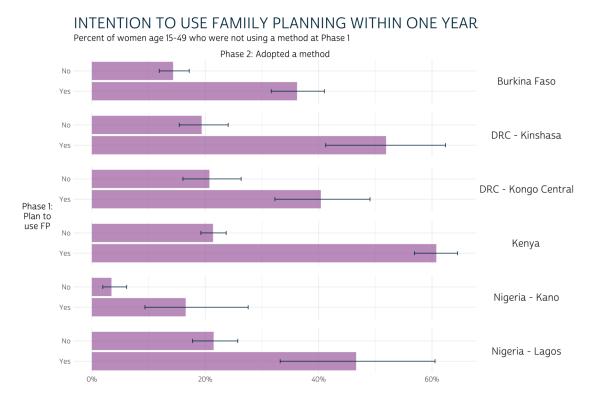
4.7.3 Intentions

Lastly, we'll demonstrate the impact of women's plans for future family planning use at Phase 1. The variable FPUSPLAN indicates whether women had plans for future use *at any point* in the future, but here we'll consider whether women had plans to adopt a method *within the next year* to correspond with the timing of Phase 2 surveys.

There are two variables that describe the approximate time when women said they would adopt a family planning method (if at all). FPPLANVAL contains a raw number that should be matched with a *unit* of time (months, years) or a categorical response ("soon / now", "after the birth of this child") in FPPLANWHEN:

dat %>% count(FPPLANWHEN_1)

#	A t	ibble: 7 × 2			
	FPPLANWHEN_1 n				
	<ir< td=""><td>nt+lbl></td><td><int></int></td></ir<>	nt+lbl>	<int></int>		
1	1	[Months]	932		
2	2	[Years]	3039		
3	3	[Soon / Now]	685		
4	4	[After the birth of this child]	338		
5	97	[Don't know]	893		
6	98	[No response or missing]	18		
7	99	[NIU (not in universe)]	4668		


We'll create FPPLANYR_1 to indicate whether each woman planned to use family planning within a year's time at Phase 1.

• FPPLANYR_1 - Phase 1 plans to use FP within one year

```
dat <- dat %>%
mutate(
    FPPLANYR_1 = case_when(
        FPPLANWHEN_1 == 1 & FPPLANVAL_1 <= 12 ~ "Yes", # Within 12 months
        FPPLANWHEN_1 == 2 & FPPLANVAL_1 == 1 ~ "Yes", # Within 1 year
        FPPLANWHEN_1 %in% c(3, 4) ~ "Yes", # Soon / now or after current pregnancy
        TRUE ~ "No" # Includes date unknown, no response, or no intention (FPUSPLAN)
    )
)</pre>
```

Our final plot shows the difference in FP adoption between women who planned to do so within the year, compared with women with no such plans.

```
dat %>%
 group_by(POP) %>%
 summarise(
    cur data() %>%
      as_survey_design(weight = PANELWEIGHT, id = EAID_1, strata = STRATARC) %>%
      group_by(FPPLANYR_1, CP_2) %>%
      summarise(survey_mean(vartype = "ci", prop = TRUE, prop_method = "logit"))
  ) %>%
 filter(CP_2 == 1) %>%
 ggplot(aes(x = coef, y = FPPLANYR_1)) +
 facet_grid(rows = vars(POP)) +
 pma bars(
   "INTENTION TO USE FAMIILY PLANNING WITHIN ONE YEAR",
    "Percent of women age 15-49 who were not using a method at Phase 1",
   xaxis = "Phase 2: Adopted a method",
    yaxis = "Phase 1: Plan to use FP"
 )
```


In every population, Phase 1 non-users who planned to adopt a method by Phase 2 were significantly more likely to do so. However, a significant *majority* of Phase 1 non-users with plans to adopt a method actually did so only in Kenya, where the 95% confidence interval for "Yes" responses includes only proportions greater than the 50% threshold.

4.8 LIMITATIONS

As we've seen, **grouped bar charts** give us a simple way to identify clear differences between Phase 2 outcomes for subgroups defined by baseline family planning conditions or key demographic features. Additionally, when we facet populations of interest on the same axis, we can easily compare differences between subgroups for many samples in a single figure.

One drawback to using graphical confidence interval overlap as a substitute for hypothesis tests is that it's more conservative than formal statistical tests. We are not able to easily spot differences near the conventional 95% certainty threshold. However, we demonstrated how you can adapt our code to conduct formal hypothesis tests like the Rao-Scott chi-square test for proportions in a complex survey sample.

Another drawback to this approach is that we've been unable to showcase estimates for the proportion of responses at any *one* phase of the study. For example, in our last figure, we estimated that about 35% of women who *planned to use* contraception within the year at Phase 1 did so at Phase 2; our figure does not show how many women planned to use contraception within the year *as a share of the Phase 1 population*.

To better understand the change over time relative to the size of each subgroup in our analysis, we'll turn to a slightly more complicated data visualization method. In Chapter 5, we'll show how to create **alluvial plots**, like those shown in the first two pages of each PMA report.

5 ADVANCED DATA VISUALIZATION

In Chapter 4, we demonstrated how to calculate key family planning indicators and plot our estimates in a way that allows the reader to compare confidence intervals for each population.

Chapter 5 digs into some of the other data visualization tools that are commonly used for two-phase panel data: this will include color-coded crosstabs - or **heatmaps** - and **alluvial plots** resembling those shown in the PMA Longitudinal Brief for each panel survey.

R users can build heatmaps with the same ggplot2 package featured in Chapter 4, but alluvial plots are a bit more challenging. To make things easier, we'll build ours with ggalluvial, an extension package for ggplot2 that includes tools designed specifically for alluvial plots.²⁹

You can install or update ggalluvial from CRAN like so:

install.packages("ggalluvial")

²⁹ggalluvial © Cory Brunson et al. (GPL-3)

5.1 CHAPTER SETUP

In addition to ggalluvial, we'll also load three packages featured throughout this manual: tidyverse, ipumsr, and srvyr.

```
library(tidyverse)
library(ipumsr)
library(srvyr)
library(ggalluvial)
```

This chapter features the same data extract showcased in Chapter 4, which includes all six of the available samples. It is organized in **Wide** format with only **Female Respondents** selected. This chapter focuses on the following variables included in that extract:

- RESULTFQ Result of female questionnaire
- PANELWEIGHT Phase 2 female panel weight
- **RESIDENT** Household residence / membership
- PREGNANT Pregnancy status
- GEOCD Province, DRC
- GEONG State, Nigeria
- CP Contraceptive user
- COUNTRY PMA country (preselected)
- EAID Enumeration area (preselected)

Recall that our analysis in Chapter 4 concerned only *de facto* panel members who completed all or part of the Female Questionnaire in both Phase 1 and Phase 2. We also excluded women who are marked "NIU (not in universe)" for a key question concerning current contraceptive use (CP). As a reminder, you can load the extract into R and select relevant cases like so:

```
dat <- read_ipums_micro(
    ddi = "data/pma_00006.xml",
    data = "data/pma_00006.dat.gz"
)
dat <- dat %>%
    filter(
    RESULTFQ_2 == 1,
    RESIDENT_1 %in% c(11, 22) & RESIDENT_2 %in% c(11, 22),
    CP_1 < 90 & CP_2 < 90
    )
```

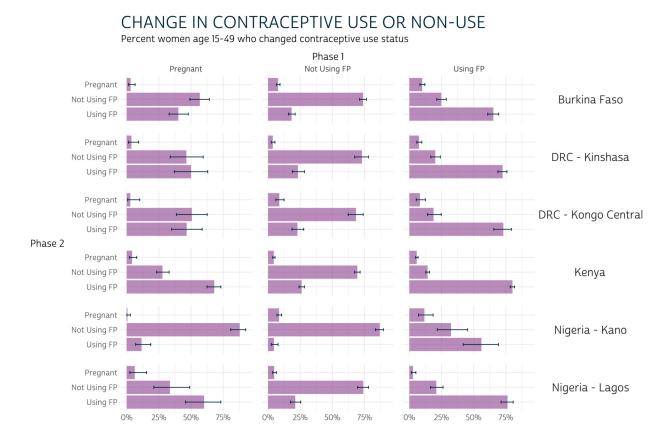
Additionally, we will reference four variables created in Chapter 4:

- POP Population of interest
- STRATARC Numeric codes for PMA sample strata (recoded for DRC samples)
- FPSTATUS_1 Pregnant, using contraception, or using no contraception at Phase 1
- FPSTATUS_2 Pregnant, using contraception, or using no contraception at Phase 2

These variables were created like so:

```
dat <- dat %>%
  mutate(
   POP = case_when(
      !is.na(GEOCD) ~ paste("DRC -", as_factor(GEOCD)),
      !is.na(GEONG) ~ paste("Nigeria -", as_factor(GEONG)),
     TRUE ~ as_factor(COUNTRY) %>% as.character()
    ),
    STRATARC = if else(
      is.na(GEOCD),
      zap_labels(STRATA_1),
      zap_labels(GEOCD)
    ),
    FPSTATUS_1 = case_when(
      PREGNANT_1 == 1 ~ "Pregnant",
      CP 1 == 1 \sim "Using FP",
     CP_1 == 0 ~ "Not Using FP"
    ),
    FPSTATUS_2 = case_when(
      PREGNANT_2 == 1 ~ "Pregnant",
      CP_2 == 1 \sim "Using FP",
     CP 2 == 0 ~ "Not Using FP"
   ),
    across(
      c(FPSTATUS 1, FPSTATUS 2),
     ~.x %>% fct_relevel("Pregnant", "Not Using FP", "Using FP")
    )
  )
```

5.2 GROUPED BAR CHARTS


Now let's revisit the **grouped bar chart** we made to compare FPSTATUS_1 and FPSTATUS_2 for each population POP in Chapter 4. We made this chart in basically two steps.

First, we used srvyr to build a summary table that incorporates survey weights from PANELWEIGHT and generates a 95% confidence interval for each estimate. We used EAID_1 to generate the cluster-robust standard errors underlying each confidence interval, and we stratified standard error estimation by STRATARC.

Notice that we group_by FPSTATUS_1 and FPSTATUS_2 here. When we do this, survey_mean estimates the proportion of outcomes represented by the variable that appears *last*, which is FPSTATUS_2. The proportions sum to 1.0 for each combination of POP and FPSTATUS_1: in other words, we obtain the proportion of FPSTATUS_2 *on the condition* that women from a given POP held a particular status represented by FPSTATUS_1. For this reason, this is known as a **conditional distribution**.

```
status tbl <- dat %>%
 group by(POP) %>%
 summarise(
    .groups = "keep",
   cur data() %>%
     as_survey_design(weight = PANELWEIGHT, id = EAID_1, strata = STRATARC) %>%
     group by(FPSTATUS 1, FPSTATUS 2) %>%
     summarise(survey_mean(prop = TRUE, prop_method = "logit", vartype = "ci"))
 )
status_tbl
# A tibble: 54 \times 6
# Groups: POP [6]
         FPSTATUS_1 FPSTATUS_2 coef `_low` `_upp`
  POP
               <fct> <fct> <dbl> <dbl> <dbl>
  <chr>
1 Burkina FasoPregnantPregnant0.03020.01370.06522 Burkina FasoPregnantNot Using FP0.5680.4910.6423 Burkina FasoPregnantUsing FP0.4010.3290.478
4 Burkina Faso Not Using FP Pregnant 0.0779 0.0651 0.0929
5 Burkina Faso Not Using FP Not Using FP 0.739 0.711 0.765
6 Burkina Faso Not Using FP Using FP 0.183 0.158 0.211
7 Burkina Faso Using FP Pregnant
                                         0.0993 0.0815 0.121
8 Burkina Faso Using FP Not Using FP 0.248 0.213 0.287
9 Burkina Faso Using FP Using FP 0.653 0.609 0.694
10 DRC - Kinshasa Pregnant Pregnant 0.0367 0.0140 0.0930
# ... with 44 more rows
```

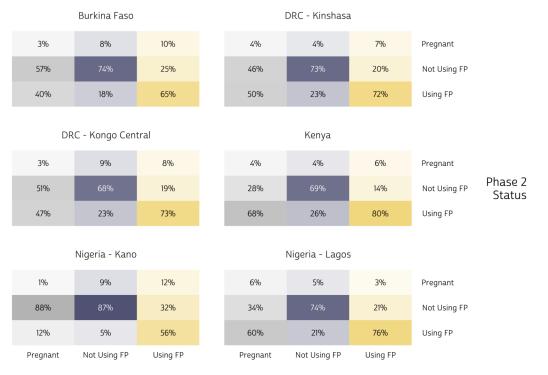
As a second step, we aligned each Phase 1 "condition" in separate columns of a **grouped bar chart**. This invites the reader to compare bars vertically, thereby emphasizing the **conditional distribution** of Phase 2 outcomes.

5.3 HEATMAPS

While our bar chart is useful for showcasing a conditional distribution, a crosstab or **heatmap** is a better choice in circumstances where the **marginal distribution** is an important concern. For example, a marginal distribution for fpstatus_1 would indicate the likelihood that a woman began the survey period pregnant, using family planning, or not using family planning. The term "marginal distribution" refers to the practice of reporting these probabilities in the margins of a crosstab.

Let's return to status_tb1, but this time we'll plot it as a **heatmap** with color and alpha (transparency) aesthetics. As in Chapter 4, we'll design a function that combines several ggplot2 tools we'll recycle in each plot.³⁰

```
pma heatmap <- function(</pre>
   title = NULL,
                    # an optional title
    subtitle = NULL, # an optional subtitle
   xaxis = NULL,  # an optional label for the x-axis (displayed below)
   vaxis = NULL
                    # an optional label for the y-axis (displayed right)
) {
 components <- list(</pre>
    theme minimal() %+replace% theme(
      text = element_text(family = "cabrito", size = 42, lineheight = 0.3),
      plot.title = element text(size = 64, color = "#00263A",
                                hjust = 0, margin = margin(b = 5)),
      plot.subtitle = element_text(hjust = 0, margin = margin(b = 10)),
      axis.text = element text(size = 28),
      strip.text.x = element text(margin = margin(t = 10, b = 10)),
      strip.text.y = element_text(angle = 0),
      strip.background = element blank(),
      axis.title.y = element_text(angle = 0, margin = margin(l = 20), hjust = 1),
      axis.title.y.right = element_text(angle = 0),
      axis.title.x.bottom = element text(margin = margin(t = 20)),
      panel.grid = element_blank(),
      panel.spacing = unit(1, "lines"),
      legend.position = "none"
    ),
    labs(title = title, subtitle = subtitle, x = xaxis, y = str_wrap(yaxis, 10)),
    scale_fill_manual(values = c("Pregnant" = "#B4B3B3", "Not Using FP" = "#4E4F71",
                                 "Using FP" = "#EFD372")),
    scale_color_manual(values = c("black", "white")),
    scale_y_discrete(position = "right", limits = rev)
  )
}
```


³⁰This manual uses the proprietary font cabrito sans, which is implemented in figures via the showtext package for R. You can purchase a license to use cabrito sans, or substitute with a font of your choice.

A simple **heatmap** can be built with rectangles from geom_tile and text labels from geom_text. We'll also tell geom_tile to use one fill color for each type of response in FPSTATUS_1: this makes it easy for the reader to see that the totals in each tile sum to 100% in columns (not rows). The alpha aesthetic uses the value in coef to control the transparency of each color.

```
status_tbl %>%
ggplot(aes(x = FPSTATUS_1, y = FPSTATUS_2)) +
geom_tile(aes(fill = FPSTATUS_1, alpha = coef)) +
geom_text(aes(
    label = scales::percent(coef, 1),
    color = coef > 0.5 & FPSTATUS_1 == "Not Using FP" # white vs black text
)) +
facet_wrap(~POP, nrow = 3, scales = "fixed") +
pma_heatmap(
    "CHANGE IN CONTRACEPTIVE USE OR NON-USE",
    "Percent women age 15-49 who changed contraceptive use status",
    xaxis = "Phase 1 Status",
    yaxis = "Phase 2 Status"
)
```

CHANGE IN CONTRACEPTIVE USE OR NON-USE

Percent women age 15-49 who changed contraceptive use status

Phase 1 Status

The nice thing about this heatmap layout is that - compared with our bar chart - it's much easier to include data from the marginal distribution of FPSTATUS_1 and FPSTATUS_2. To do so, we'll first need to add them to status_tbl.

First, we use group_by(FPSTATUS_1) to make the column margins and join them to status_tbl. (Note that we set vartype = NULL because we won't be able to include confidence intervals on our heatmap.)

We use full_join, but both left_join and right_join would work equally well in this case.

```
status_tbl <- dat %>%
group_by(POP) %>%
summarise(
    cur_data() %>%
    as_survey_design(weight = PANELWEIGHT, id = EAID_1, strata = STRATARC) %>%
    group_by(FPSTATUS_1) %>%
    summarise(cols = survey_mean(prop = TRUE, prop_method = "logit", vartype = NULL))
) %>%
full_join(status_tbl, ., by = c("POP", "FPSTATUS_1"))
```

Next, we use group_by(FPSTATUS_2) to add row margins to status_tbl.

```
status_tbl <- dat %>%
group_by(POP) %>%
summarise(
    cur_data() %>%
    as_survey_design(weight = PANELWEIGHT, id = EAID_1, strata = STRATARC) %>%
    group_by(FPSTATUS_2) %>%
    summarise(rows = survey_mean(prop = TRUE, prop_method = "logit", vartype = NULL))
) %>%
full_join(status_tbl, ., by = c("POP", "FPSTATUS_2"))
```

The column margins now appear in cols, while the row margins appear in rows.

status_tbl

```
# A tibble: 54 × 8
# Groups: POP [6]
            FPSTATUS_1 FPSTATUS_2 coef `_low` `_upp` cols
  POP
                                                                rows
  <chr>
             <fct>
                         <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Burkina Faso Pregnant Pregnant 0.0302 0.0137 0.0652 0.0879 0.0799
2 Burkina Faso Pregnant Not Using FP 0.568 0.491 0.642 0.0879 0.583
3 Burkina Faso Pregnant Using FP 0.401 0.329 0.478 0.0879 0.337
                                    0.0779 0.0651 0.0929 0.624 0.0799
4 Burkina Faso Not Using FP Pregnant
5 Burkina Faso Not Using FP Not Using FP 0.739 0.711 0.765 0.624 0.583
6 Burkina Faso Not Using FP Using FP 0.183 0.158 0.211 0.624 0.337
7 Burkina Faso Using FP Pregnant 0.0993 0.0815 0.121 0.288 0.0799
8 Burkina Faso Using FP
                         Not Using FP 0.248 0.213 0.287 0.288 0.583
9 Burkina Faso Using FP Using FP 0.653 0.609 0.694 0.288 0.337
10 DRC - Kinshasa Pregnant Pregnant 0.0367 0.0140 0.0930 0.0552 0.0533
# ... with 44 more rows
```

Now, we can simply paste these values together with the original labels from FPSTATUS_1 and FPSTATUS_2.

```
status tbl %>%
 ggplot(aes(
   x = paste0(scales::percent(cols, 1), "\n", FPSTATUS_1) %>% as_factor,
   y = paste0(scales::percent(rows, 1), "\n", FPSTATUS_2) %>% as_factor
 )) +
 geom tile(aes(fill = FPSTATUS 1, alpha = coef)) +
 geom text(aes(
   label = scales::percent(coef, 1),
   color = coef > 0.5 & FPSTATUS 1 == "Not Using FP"
 )) +
 facet_wrap(~POP, nrow = 3, scales = "free") +
 pma heatmap(
   "CHANGE IN CONTRACEPTIVE USE OR NON-USE",
   "Percent women age 15-49 who changed contraceptive use status",
   xaxis = "Phase 1 Status",
   yaxis = "Phase 2 Status"
 )
```

CHANGE IN CONTRACEPTIVE USE OR NON-USE

Percent women age 15-49 who changed contraceptive use status

The information contained in our heatmap is similar to what we saw in our bar chart, except for two things:

- 1. There are no error bars on our heatmap. If we wanted to include information about the confidence interval for each estimation, we would have to include text symbols.
- 2. While both plots show information about the conditional distribution of FPSTATUS_2 given a starting point in FPSTATUS_1, only the heatmap includes the marginal distribution of each variable in its row and column margins.

The marginal distribution may provide crucial information about the conditional distribution that we would otherwise miss. Consider Burkina Faso, where both users and non-users of family planning at Phase 1 were generally most likely to maintain their status at Phase 2. The marginal distribution adds additional information: non-users comprise a larger share of the overall population at Phase 1.

In certain contexts, you may want to combine information from the Phase 1 marginal distribution together with the conditional distribution of outcomes at Phase 2. To continue with our example from Burkina Faso, you might report that - because non-users represent about 62% of the population, only about 11% of the population adopted family planning at Phase 2 following non-use at Phase 1. That is: 18% of 62% is 11%.

In contrast with the conditional distribution, this type of distribution describes the share of the population that experiences some combination of Phase 1 and Phase 2 outcomes *without* assuming a particular starting point at Phase 1. It's known as a **joint distribution** because it gives the probability that two events will happen together in sequence. Let's return to our summary table, status_tbl: to find the estimated joint distribution for each combination of FPSTATUS_1 and FPSTATUS_2, you could simply multiply each value in cols by the value in coef:

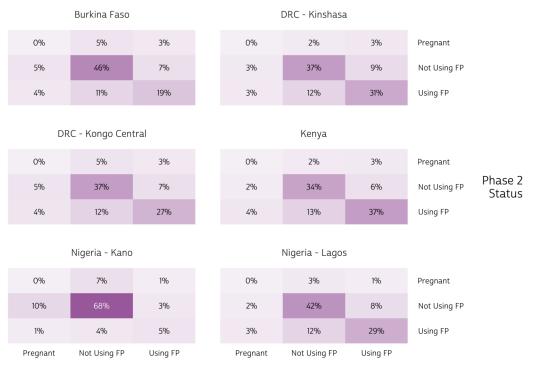
```
status_tbl %>% mutate(joint = cols * coef)
```

```
# A tibble: 54 × 9
# Groups: POP [6]
          FPSTATUS_1 FPSTATUS_2 coef `_low` `_upp` cols
  POP
                                                                joint
                                                           rows
2 Burkina Faso Pregnant Not Using FP 0.568 0.491 0.642 0.0879 0.583 0.0499
3 Burkina Faso Pregnant Using FP 0.401 0.329 0.478 0.0879 0.337 0.0353
4 Burkina Faso Not Using FP Pregnant 0.0779 0.0651 0.0929 0.624 0.0799 0.0486
5 Burkina Faso Not Using FP Not Using FP 0.739 0.711 0.765 0.624 0.583 0.461
6 Burkina Faso Not Using FP Using FP 0.183 0.158 0.211 0.624 0.337 0.114
7 Burkina Faso Using FP
                                 0.0993 0.0815 0.121 0.288 0.0799 0.0286
                       Pregnant
8 Burkina Faso Using FP Not Using FP 0.248 0.213 0.287 0.288 0.583 0.0713
9 Burkina Faso Using FP Using FP 0.653 0.609 0.694 0.288 0.337 0.188
10 DRC – Kinshasa Pregnant Pregnant
                                 0.0367 0.0140 0.0930 0.0552 0.0533 0.00203
# ... with 44 more rows
```

In practice, you'll usually want to let srvyr calculate a confidence interval for each joint probability. To do so, we'll add an interact function listing the variables in group_by that we want to model jointly.

```
joint_tbl <- dat %>%
group_by(POP) %>%
summarise(
  .groups = "keep",
  cur_data() %>%
    as_survey_design(weight = PANELWEIGHT, id = EAID_1, strata = STRATARC) %>%
    group_by(interact(FPSTATUS_1, FPSTATUS_2)) %>%
    summarise(joint = survey_mean(prop = TRUE, prop_method = "logit", vartype = "ci"))
)
```

joint_tbl


# A tibble: 54×6							
# Groups: POP [6]							
POP	FPSTATUS_1	FPSTATUS_2	joint	joint_low	joint_upp		
<chr></chr>	<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>		
1 Burkina Faso	Pregnant	Pregnant	0.00266	0.00120	0.00587		
2 Burkina Faso	Pregnant	Not Using FP	0.0499	0.0404	0.0615		
3 Burkina Faso	Pregnant	Using FP	0.0353	0.0291	0.0427		
4 Burkina Faso	Not Using FP	Pregnant	0.0486	0.0402	0.0588		
5 Burkina Faso	Not Using FP	Not Using FP	0.461	0.428	0.495		
6 Burkina Faso	Not Using FP	Using FP	0.114	0.100	0.130		
7 Burkina Faso	Using FP	Pregnant	0.0286	0.0228	0.0357		
8 Burkina Faso	Using FP	Not Using FP	0.0713	0.0613	0.0829		
9 Burkina Faso	Using FP	Using FP	0.188	0.164	0.214		
10 DRC – Kinshasa	Pregnant	Pregnant	0.00203	0.000794	0.00515		
# with 44 more rows							

Now, the values in joint sum to 1.0 for each POP. Returning to our heatmap, we'll want to use the same color for all columns, indicating that the percentages sum for 100% for each population.

```
joint_tbl %>%
ggplot(aes(x = FPSTATUS_1, y = FPSTATUS_2)) +
geom_tile(aes(alpha = joint), fill = "#98579B") +
geom_text(aes(
    label = scales::percent(joint, 1),
    color = joint > 0.5 & FPSTATUS_1 == "Not Using FP"
)) +
facet_wrap(~POP, nrow = 3, scales = "fixed") +
pma_heatmap(
    "CHANGE IN CONTRACEPTIVE USE OR NON-USE",
    "Percent women age 15-49 who changed contraceptive use status",
    xaxis = "Phase 1 Status",
    yaxis = "Phase 2 Status"
)
```

CHANGE IN CONTRACEPTIVE USE OR NON-USE

Percent women age 15-49 who changed contraceptive use status

Phase 1 Status

Information provided by the joint distribution nuances our story a bit further. To continue with our examination of Burkina Faso: we knew that family planning users and non-users at Phase 1 were each most likely to maintain, rather than switch their status at Phase 2. However, it's now clear that *continuous non-users* (non-users at both Phase 1 and Phase 2) represent a near-majority of the population.

5.4 ALLUVIAL PLOTS

Alluvial plots are an especially popular way to visualize longitudinal data, in part, because they combine information from each of the three distributions we've discussed. They also make it possible to show data from more than two variables (we'll use them again when Phase 3 data become available). You'll find alluvial plots on the first two pages of the PMA report for each sample.

In an alluvial plot, the marginal distribution of responses for each variable are usually plotted in vertical stacks. The ggalluvial package authors refer to these stacks as "strata", and they may be layered onto a ggplot with geom_stratum. In our case, the strata will show the marginal distribution of women in FPSTATUS_1 and FPSTATUS_2.

The **joint distribution** for any pair of variables is plotted in horizontal splines called "alluvia", which bridge the space between any given pair of strata. Alluvia are plotted with geom_flow.

Finally, we'll use color to map each alluvium with an originating stratum from FPSTATUS_1. This will help the reader visualize the conditional distribution of FPSTATUS_2 responses given a starting point in FPSTATUS_1.

To begin, let's revisit joint_tbl, which only contains the joint distribution for FPSTATUS_1 and FPSTATUS_2. In fact, ggalluvial will calculate the marginal distribution for both variables automatically if we reshape joint_tbl with pivot_longer like so:

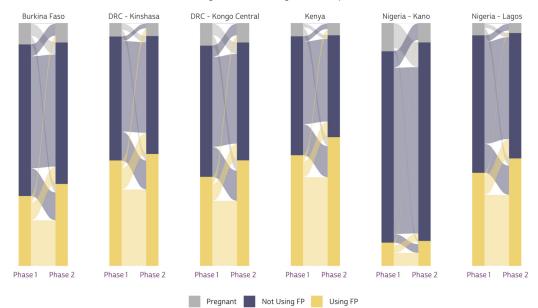
```
joint_tbl <- joint_tbl %>%
rowid_to_column("alluvium") %>%
pivot_longer(c(FPSTATUS_1, FPSTATUS_2), names_to = "x", values_to = "stratum") %>%
mutate(x = ifelse(x == "FPSTATUS_1", "Phase 1", "Phase 2")) %>%
arrange(x, alluvium)
```

joint_tbl

```
# A tibble: 108 × 7
# Groups: POP [6]
  alluvium POPjoint joint_low joint_upp xstratum<int> <chr><dbl> <dbl> <dbl> <chr><fct>
      1 Burkina Faso 0.00266 0.00120 0.00587 Phase 1 Pregnant
1
       2 Burkina Faso 0.0499 0.0404 0.0615 Phase 1 Pregnant
2
      3 Burkina Faso 0.0353 0.0291 0.0427 Phase 1 Pregnant
4 Burkina Faso 0.0486 0.0402 0.0588 Phase 1 Not Using FP
3
4
       5 Burkina Faso 0.461 0.428
                                          0.495 Phase 1 Not Using FP
5
      6 Burkina Faso 0.114 0.100
                                          0.130 Phase 1 Not Using FP
6
       7 Burkina Faso 0.0286 0.0228 0.0357 Phase 1 Using FP
7
       8 Burkina Faso 0.0713 0.0613 0.0829 Phase 1 Using FP
8
9
       9 Burkina Faso 0.188 0.164
                                          0.214 Phase 1 Using FP
10
     10 DRC - Kinshasa 0.00203 0.000794 0.00515 Phase 1 Pregnant
# ... with 98 more rows
```

Here, we create the column alluvium to hold the original row number for each of the 56 combinations of POP, FPSTATUS_1, and FPSTATUS_2. When we pivot_longer, we repeat the value in joint once for each end of the same alluvium. The values in stratum describe the strata to to which each alluvium is attached, and x indicates whether the stratum is located in the Phase 1 or Phase 2 stack.

As with our heatmap, we'll want to define some custom layout options in a function we'll call pma_alluvial:


```
pma_alluvial <- function(</pre>
   title = NULL,  # an optional title
   subtitle = NULL, # an optional subtitle
   xaxis = NULL,  # an optional label for the x-axis (displayed below)
   yaxis = NULL
                    # an optional label for the y-axis (displayed left)
){
 components <- list(</pre>
    theme minimal() %+replace% theme(
      text = element text(family = "cabrito", size = 42, lineheight = 0.3),
      plot.title = element text(size = 64, color = "#541E5A",
                                hjust = 0.5, mar = margin(b = 5)),
      plot.subtitle = element_text(hjust = 0.5, margin = margin(b = 20)),
      strip.background = element_blank(),
      strip.text.x = element_text(margin = margin(b = 5)),
      axis.text.x = element_text(color = "#541E5A", margin = margin(t = 5, b = 10)),
      axis.text.y = element blank(),
      panel.spacing = unit(1, "lines"),
      plot.margin = margin(0, 100, 0, 100),
      legend.position = "bottom",
      legend.title = element blank(),
      legend.spacing.x = unit(10, "pt"),
      panel.grid = element blank()
    ),
    labs(
     title = title.
      subtitle = subtitle,
     x = xaxis,
      y = str_wrap(yaxis, 10),
    ),
    scale fill manual(values = c(
     "Pregnant" = "\#B4B3B3",
     "Not Using FP" = "#4E4F71",
     "Using FP" = "#EFD372"
   )),
    scale y continuous(expand = c(0, 0))
 )
}
```

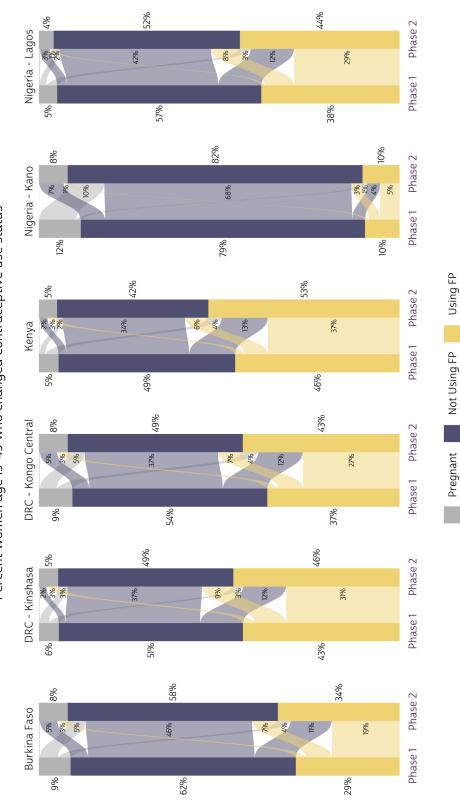
We'll start by mapping common aesthetics in a ggplot function. We'll map the values in x onto our x-axis, and we'll map the values in joint onto the y-axis. The remaining aesthetics are specific to the functions from ggalluvial: we'll use stratum to build vertical strata and to define colors mapped with "fill". We also use the identifying numbers in alluvium to organize responses into alluvia.

The remaining functions are straightforward, since they mainly use information passed from ggplot. We make only one small modification to geom_stratum: setting size = 0 removes border lines that appear around each stratum, by default.

```
status_alluvial <- joint_tbl %>%
ggplot(aes(
    x = x,
    y = joint,
    fill = stratum,
    stratum = stratum,
    alluvium = alluvium
)) +
geom_flow() +
geom_stratum(size = 0) +
facet_wrap(~POP, scales = "free_x", nrow = 1) +
pma_alluvial(
    "CHANGE IN CONTRACEPTIVE USE OR NON-USE",
    "Percent women age 15-49 who changed contraceptive use status",
)
```

status_alluvial

CHANGE IN CONTRACEPTIVE USE OR NON-USE Percent women age 15-49 who changed contraceptive use status


Of course, you should always include either y-axis gridlines or text labels for the probabilities shown on a plot like this one. We find it clearer to include the latter, which we'll build with geom_text.

These labels are a bit tricky, but the basic idea is that you use stat = "stratum" to label strata, and stat = "flow" to label alluvia. Then, you use after_stat to build labels from statistics that ggalluvial uses to construct the plot - check out this list of available statistics for details. We'll use the prop statistic to obtain *both* the marginal and joint probabilities.

Values may not add to 100% due to rounding (values rounded to 0% are not labelled).

```
status_alluvial +
 geom text(
   stat = "stratum", # label strata
   aes(label = ifelse(
     x == 1, # labels the strata for Phase 1, otherwise blank ""
      scales::percent(after_stat(prop), 1),
     .....
    )),
   nudge_x = -0.2, # nudge a bit to the left
   hjust = "right", # right-justify
 ) +
 geom text(
   stat = "stratum", # label strata
   aes(label = ifelse(
      x == 2, # labels the strata for Phase 2, otherwise blank ""
      scales::percent(after_stat(prop), 1),
     .....
    )),
    nudge_x = 0.2, # nudge a bit to the right
   hjust = "left", # left-justify
 ) +
 geom_text(
   stat = "flow", # label alluvia
   aes(label = ifelse(
      after_stat(flow) == "to" & # only label the destination (right-side)
       after stat(prop) >= 0.01, # hide if 0%
      scales::percent(after_stat(prop), 1),
      .....
    )),
    nudge_x = -0.2, # nudge a bit to the left
   hjust = "right", # right-justify
    size = 8 # use a slightly smaller font
 )
```

Now, it's easy to identify the proportion of women at each phase *and* the proportion who switched or maintained their status between phases.

6 CONTRACEPTIVE CALENDAR

As we've seen, PMA panel surveys represent annual interviews that will ultimately include three phases of data collection. Most questions will be repeated for a total of three observations each spaced one year apart. However, some data in PMA panel surveys are reported *monthly* up to three years prior to the interview in each phase. These data are provided as a comma-delimited character string known as the **Contraceptive Calendar**.

Chapter 6 includes code you can use to parse and analyze data from the **Contraceptive Calendar**. These data are particularly exciting because they offer researchers an opportunity to explore longitudinal analysis techniques like survival analysis to model the duration of events like:

- continuous use (or non-use) of a contraceptive method
- birth spacing
- pregnancies leading to birth or termination

To demonstrate, we'll test whether women with unmet need or plans to adopt a family planning method at Phase 1 were quicker to begin using one in the months between Phase 1 and Phase 2. In R, this type of analysis is facilitated by the survival package, which can be installed from CRAN like so:

install.packages("survival")

© Terry M. Therneau et al. (LGPL >=2)

The term "survival analysis" refers to the probability that a person "survives" a particular condition for a given period of time, most commonly in clinical

research settings. In the social sciences, this type of analysis is also known as "event history", "time-to-event", or "duration" analysis. We use the term "survival" in order to match the terminology used in the R package featured in this chapter.

There are many additional R packages available for plotting Kaplan Meier / Time-to-Event curves showing the probability of survival over time.³¹ Here, we will show how to construct these figures with the same ggplot2 toolkit featured in previous chapters.

³¹For example, see ggsurvfit.

6.1 CHAPTER SETUP

Two calendar variables are available for each country in the PMA panel study. The main calendar - which we refer to as the **Contraceptive Calendar** - is named as follows:

- CALENDARBF
- CALENDARCD
- CALENDARKE
- CALENDARNG

This calendar represents contraceptive use, pregnancy, pregnancy termination, and birth information for each month preceding the interview for the Female Questionnaire in a particular phase of the panel study. Women are asked to recall their status for each month in the calendar period, and their responses are recorded in a single comma-delimited string with the following codes:

- в Birth
- P Pregnant
- T Pregnancy ended
- 0 No family planning method used
- 1 Female Sterilization
- 2 Male Sterilization
- 3 Implant
- 4 IUD
- 5 Injectables
- 7 Pill
- 8 Emergency Contraception
- 9 Male Condom
- 10 Female Condom
- 11 Diaphragm
- 12 Foam / Jelly
- 13 Standard Days / Cycle beads
- 14 LAM
- 30 Rhythm method
- 31 Withdrawal
- 39 Other traditional methods

For example, consider a woman sampled in Kenya who gave birth during the month of the interview following 8 prior months of pregnancy. If she had used the pill every month until the month she became pregnant, her string in CALENDARKE would look like this:

The second calendar is the **Discontinuation Calendar**, and it gives the *reason why* a woman stopped using a contraceptive method for each month following an episode of continuous use. This calendar is represented by the following variables:

- CALENDARBFWHY
- CALENDARCDWHY
- CALENDARKEWHY
- CALENDARNGWHY

Like the **Contraceptive Calendar**, the **Discontinuation Calendar** is a single comma-delimited string. It contains the following codes for months when a method was discontinued (and is blank otherwise):

- 1 Infrequent sex / husband away
- 2 Became pregnant while using
- 3 Wanted to become pregnant
- 4 Husband / partner disapproved
- 5 Wanted more effective method
- 6 Side effects / health concerns
- 7 Lack of access / too far
- 8 Costs too much
- 9 Inconvenient to use
- 10 Up to God / fatalistic
- 11 Difficult to get pregnant / menopausal
- 12 Marital dissolution / separation
- 96 Other

Returning to our example, if the same woman reported that she stopped using the pill because she wanted to become pregnant, her string in r_link(CALENDARKEWHY) would look like this:

Note that the length of the string is padded by blank values before and after the only month in which this woman stopped using the pill. This ensures that *all calendars in the same sample contain the same number of values* including blanks. Women who were interviewed one month before the final interviews were collected, for example, will always have a blank value for the left-most space on their calendar.

However, calendars from *different samples may be different lengths*. In this chapter, we'll demonstrate how to work with a data extract containing multiple samples. We will use tools from the tidyr package to separate the comma-delimited string into multiple columns, and then pivot those columns into a long format. tidyr is loaded with the tidyverse toolkit for R. Following these steps, you'll be able to merge and analyze data from calendars collected in multiple countries covering a range of different dates.

122

All six of the currently available longitudinal samples are included in the data extract featured in this chapter (**Female Respondents** only). We've selected a **Wide** format extract, so that the variables from each phase appear together in the same row. For example, the Kenya contraceptive calendar from Phase 1 is named CALENDARKE_1, while the Kenya contraceptive calendar from Phase 2 is named CALENDARKE_2.

We've selected all of the calendar variables listed above, plus these additional variables that we'll need for our analysis:

- RESULTFQ Result of female questionnaire
- FOINSTID Unique ID for female questionnaire
- RESIDENT Household residence / membership
- COUNTRYSTR Country two-letter ISO code
- INTEQMON & INTEQUEAR Date of Female Questionnaire interview
- FPCURREFFMETHRC Most effective current family planning method (recoded³²)
- PREGNANT Current pregnancy status
- UNMETYN Total unmet need
- FPPLANVAL When will start using FP method in the future value
- FPPLANWHEN When will start using FP method in the future unit
- KID1STBIRTHMO & KID1STBIRTHYR Date of first childbirth
- LASTBIRTHMO & LASTBIRTHYR Date of most recent childbirth
- PANELBIRTHMO & PANELBIRTHYR Date of childbirth during the panel study
- OTHERBIRTHMO & OTHERBIRTHYR Date of any other childbirth during the calendar period
- PREGENDMO & PREGENDYR Date of most recent pregnancy termination (miscarriage, abortion, or stillbirth)
- PANELPREGENDMO & PANELPREGENDYR Date of pregnancy termination during the panel study (miscarriage, abortion, or stillbirth)
- FPBEGINUSEMO & FPBEGINUSEYR Date of adoption for currently used family planning method

We'll load the data extract into R together with each of the packages we'll feature in this post. Then, following the **Inclusion Criteria for Analysis** described in Chapter 1, we'll drop cases for women who did not complete the Female Questionnaire or were not members of the *de facto* population in both phases.

³²The related variable FPCURREFFMETH reports the most effective method reported by each woman. In FPCURREFFMETHRC, these responses are combined with detailed information about her use of the lactational amenorrhea method (LAM), emergency contraception, or specific types of injectable methods.

```
library(ipumsr)
library(tidyverse)
library(survival)

dat <- read_ipums_micro(
    ddi = "data/pma_00007.xml",
    data = "data/pma_00007.dat.gz")

dat <- dat %>%
    filter(
        RESULTFQ_2 == 1,
        RESIDENT_1 %in% c(11, 22) & RESIDENT_2 %in% c(11, 22)
    )
```

In order to make this chapter a bit easier to follow, we're going to omit survey design information - weights and identifiers for samples clusters and strata - featured in previous chapters. R users can find several functions adapted from the survival package in the survey package, but we recommend that beginners start with the basics before confronting complex survey design.³³

We'll instead organize results by country (combining sub-national samples for Nigeria and the DRC, which use the same calendar variables). Two-letter ISO codes for each country are available in the variable COUNTRYSTR_1; we'll extract these codes with zap_labels to make a new variable called CNTRY.³⁴ In graphics, we'll switch these ISO codes for readable country names extracted from the value labels in COUNTRY.

Use zap_labels to remove all labels from an IPUMS variable.

```
    CNTRY - Country two-letter ISO code
```

```
dat <- dat %>%
  mutate(
    CNTRY = COUNTRYSTR_1 %>% zap_labels,
    COUNTRY = COUNTRY %>%
        as_factor %>%
        fct_recode("DRC" = "Congo, Democratic Republic")
)
```

³³The survival function survfit used to fit a Time-to-Event curve in the Analysis section of this chapter is analogous to the survey function svykm, except that the latter incorporates complex survey information. For simplicity, the confidence intervals shown in this chapter do not account for cluster sampling, and may be narrower as a result.

³⁴The same ISO codes are also available in countrystr_2.

Finally, we'll also create a short ID number for each woman, making it easier for the reader to follow the same individual's responses throughout several reformatting steps. **This is for display purposes only** - in practice, the 41-character variable FQINSTID should be used as a unique identifier for each panel member.

• ID - Short ID for each panel member (for display only)

```
dat <- dat %>% rowid_to_column("ID")
```

6.2 CENTURY MONTH CODES (CMC)

As shown above, we'll be referencing several variables representing **dates** in this chapter Generally, IPUMS PMA publishes every date with two variables: one representing the month (e.g. INTFQMON) and one representing the year (e.g. INTFQYEAR). Sometimes, you'll notice a third variable representing dates with a **century month code (CMC**): each CMC represents the number of months that have passed between a given date and January 1900. CMC dates are particularly useful for calculating the time between events because they replace two variables (with different units) with one simple integer.

Some CMC variables are available directly from IPUMS PMA (e.g. INTFQCMC), but we'll create our own CMC variables for all of the dates we'll reference in this post. CMC dates are simply calculated as follows:

$$CMC = Month + 12 * (Year - 1900)$$

Because all or part of a date may be **missing** (the month or year), and because certain dates may be "NIU (not in universe)" (e.g. "date of most recent childbirth" for women who have never given birth), we'll need to consider specific circumstances where we should use the value NA in a CMC variable.

In the contraceptive calendar, we'll be measuring the time between events in *months*. Therefore, it would be insufficient to include cases where a woman only reported the *year* in which an event occurred. We'll create a function that generates NA values if the numeric code representing a month is 90 or higher (all valid months are coded 1 through 12), and if a year is 9000 or higher (all valid years are in the 1900s or 2000s). Otherwise, we'll use the CMC formula to calculate the appropriate CMC value for each date.

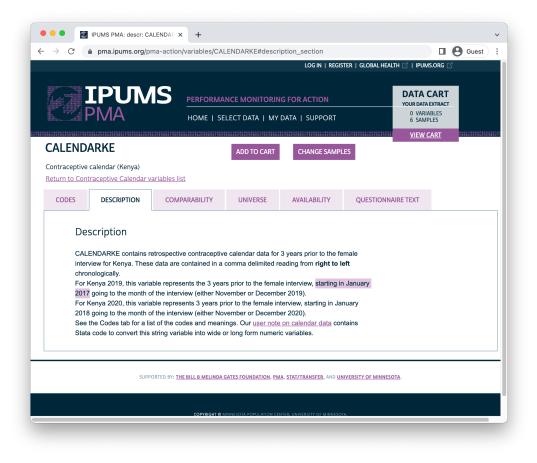
Let's call this function make_cmc:

```
make_cmc <- function(mo, yr){
    case_when(mo < 90 & yr < 9000 ~ mo + 12*(yr - 1900))
}</pre>
```

With case_when, any "case" not explicitly covered by mo < 90 & yr < 9000 is assigned the value NA. You can apply make_cmc to any combination of variables representing the month and year for a date. We'll create one CMC for each date in our data extract.

```
dat <- dat %>%
 mutate(
    INTFQCMC_1 = make_cmc(INTFQMON_1, INTFQYEAR_1),
    INTFQCMC 2 = make cmc(INTFQMON 2, INTFQYEAR 2),
    KID1STBIRTHCMC 1 = make cmc(KID1STBIRTHMO 1, KID1STBIRTHYR 1),
    KID1STBIRTHCMC 2 = make cmc(KID1STBIRTHMO 2, KID1STBIRTHYR 2),
    LASTBIRTHCMC 1 = make cmc(LASTBIRTHMO 1, LASTBIRTHYR 1),
    LASTBIRTHCMC 2 = make cmc(LASTBIRTHMO 2, LASTBIRTHYR 2),
    OTHERBIRTHCMC_1 = make_cmc(OTHERBIRTHMO_1, OTHERBIRTHYR_1),
    OTHERBIRTHCMC 2 = make cmc(OTHERBIRTHMO 2, OTHERBIRTHYR 2),
    PANELBIRTHCMC 1 = make cmc(PANELBIRTHMO 1, PANELBIRTHYR 1),
    PANELBIRTHCMC 2 = make cmc(PANELBIRTHMO 2, PANELBIRTHYR 2),
    PREGENDCMC 1 = make cmc(PREGENDMO 1, PREGENDYR 1),
    PREGENDCMC_2 = make_cmc(PREGENDM0_2, PREGENDYR_2),
    PANELPREGENDCMC 1 = make cmc(PANELPREGENDM0 1, PANELPREGENDYR 1),
    PANELPREGENDCMC_2 = make_cmc(PANELPREGENDMO_2, PANELPREGENDYR_2),
    FPBEGINUSECMC_1 = make_cmc(FPBEGINUSEM0_1, FPBEGINUSEYR_1),
    FPBEGINUSECMC 2 = make cmc(FPBEGINUSEM0 2, FPBEGINUSEYR 2)
 )
```

Let's check our work. For example, consider how we've handled PANELBIRTHCMC_2 - the date of a woman's childbirth that happened during the panel study. If we count the dates by PANELBIRTHMO_2 and use tail to examine the last few rows, we see that one woman reported code 97 indicating that she did not know the precise month of birth. Meanwhile, there were 15,064 cases coded 99 indicating that they were "NIU (not in universe)" (no birth occurred during the panel study). We've coded both of these case types with the value NA; all other values follow the CMC formula to count the number of months between January 1900 and the month of birth.


```
dat %>%
 count(PANELBIRTHM0 2, PANELBIRTHYR 2, PANELBIRTHCMC 2) %>%
 tail()
# A tibble: 6 \times 4
 PANELBIRTHMO 2
                           PANELBIRTHYR 2
                                                      PANELBIRTHCMC 2
                                                                         n
 <int+lbl>
                           <int+lbl>
                                                               <dbl> <int>
1 12 [December]
                                                                       1
                           2017
                                                                1416
2 12 [December]
                           2018
                                                                1428 13
3 12 [December]
                           2019
                                                                1440 99
4 12 [December]
                           2020
                                                                1452
                                                                        90
5 97 [Don't know]
                                                                 NA 1
                           2017
                                                                 NA 15074
6 99 [NIU (not in universe)] 9999 [NIU (not in universe)]
```

6.3 CALENDAR LENGTH

You may be wondering: why does IPUMS PMA publish a separate calendar variable for *each country*?

This is because the width of each calendar variable differs according to the number of months women were asked to recall in a particular sample. This, in turn, depends on the range of dates in which women were interviewed for the Female Questionnaire in a particular phase.

You can find the precise range of dates included in each calendar on the DESCRIPTION tab for each country's calendar variable. Here, for example, we see that the Kenya Phase 1 sample includes dates from January 2017 to the month of the interview, and that its Phase 2 sample includes dates from January 2018 to the month of the interview. Note: the two calendars overlap between January 2018 and the Phase 1 interview.

The first month in each country's calendar is listed below:

Country	Phase 1	Phase 2	
Burkina Faso	Jan 2018	Jan 2018	
DRC	Jan 2017	Jan 2018	
Kenya	Jan 2017	Jan 2018	
Nigeria	Jan 2017	Jan 2018	

Start Contraceptive Calendar

All women in the same sample were asked to recall events dating backward to a common start date (always in January, as shown above). However, the length of each woman's calendar will vary depending on the date of her interview. Interviews were collected over a period of months shown in the table below.

Stop Contraceptive Calendar

Country	Phase 1	Phase 2
Burkina Faso	Dec 2019 - Mar 2020	Dec 2020 - Apr 2021
DRC	Dec 2019 - Feb 2020	Dec 2020 - Mar 2021
Kenya	Nov 2019 - Dec 2019	Nov 2020 - Dec 2020
Nigeria	Dec 2019 - Jan 2020	Dec 2020 - Feb 2021

To determine the precise length of each woman's calendar, we'll need to create variables for the CMC date of its first month in CALSTART_1 and CALSTART_2, and also for the CMC date of its last month in CALSTOP_1 and CALSTOP_2.

- CALSTART_1 CMC for a woman's first calendar month in Phase 1
- CALSTOP_1 CMC for a woman's last calendar month in Phase 1
- CALSTART_2 CMC for a woman's first calendar month in Phase 2
- CALSTOP_2 CMC for a woman's last calendar month in Phase 2

We'll manually set CALSTART_1 and CALSTART_2 like so:

```
dat <- dat %>%
mutate(
    CALSTART_1 = if_else(CNTRY == "BF", 2018, 2017),
    CALSTART_2 = 2018,
    across(c(CALSTART_1, CALSTART_2), ~12*(.x - 1900) + 1)
)
```

CALSTOP_1 and CALSTOP_2 can be copied directly from the dates we made above for INTFQCMC_1 and INTFQCMC_2.

```
dat <- dat %>%
mutate(
    CALSTOP_1 = INTFQCMC_1,
    CALSTOP_2 = INTFQCMC_2
)
```

6.4 FORMATTING CALENDAR STRINGS

Now that we know the appropriate dates for each value in all calendar variables, we'll begin separating each string into columns. As a first step, we'll want to use pivot_longer to align all of the calendars assigned to different countries. Let's call our reformatted data frame cals. For now, it will only include ID, CNTRY, and all variables that start with CAL.

```
cals <- dat %>% select(ID, CNTRY, starts_with("CAL"))
```

Notice that the first few rows of our dataset represent women from Burkina Faso. Their values for variables like CALENDARKE_1 are blank; only the variables for Burkina Faso contain comma-delimited values.

```
cals %>% select(ID, CNTRY, CALENDARKE_1, CALENDARBF_1)
```

```
# A tibble: 17,725 × 4
 ID CNTRY CALENDARKE 1 CALENDARBF 1
<int> <chr> <chr+lbl> <chr+lbl>
 1 BF
   .....
1
        ш
  2 BF
        2
   ....
3
 3 BF
        .....
        4
 4 BF
   .....
5
 5 BF
        .....
  6 BF
6
        .....
7
 7 BF
        .....
8
  8 BF
        .....
9
 9 BF
        10 10 BF
    .....
        # ... with 17,715 more rows
```

Our goal is to reduce the number of variables in cals so that we only need to work with one calendar for *all* countries. We'll "pivot" cals in two steps. First, we'll merge data from each Phase one column per country. Second, we'll merge data from each country into a final unified column.

6.4.1 Merge Phases

We'll use pivot_longer to reorganize our **Wide** data into long format, with one row per Phase of the panel study. This procedure strips the numeric suffix from each calendar variable: we'll store this information in a new column called PHASE. Notice that the argument cols selects every column that starts_with the prefix "CAL".

• PHASE - Data Collection Phase (1 or 2)

```
cals <- cals %>%
pivot_longer(
    cols = starts_with("CAL"),
    names_pattern = "(.*)_(.*)",
    names_to = c(".value", "PHASE")
)
```

For example, let's return to those first few rows of data representing women from Burkina Faso. The variables CALENDARKE_1 and CALENDARBE_1 we previewed above are replaced with a new variable PHASE and a pair of variables named CALENDARKE and CALENDARBF.

cals %>% select(ID, CNTRY, PHASE, CALENDARKE, CALENDARBF)

```
# A tibble: 35,450 × 5
  ID CNTRY PHASE CALENDARKE CALENDARBF
 <int> <chr> <chr> <chr+lbl> <chr+lbl>
1 1 BF 1 ""
            .....
2
  1 BF 2
            2 BF 1 ""
3
            4 2 BF 2 ""
            .....
5
  3 BF 1
            .....
       .....
  3 BF 2
6
  4 BF 1
       .....
7
            .....
8
  4 BF 2
            5 BF 1
       .....
9
            .....
       .....
10 5 BF 2
# ... with 35,440 more rows
```

We've applied similar changes to variables for the **Discontinuation Calendar**.

cals %>% select(ID, CNTRY, PHASE, CALENDARKEWHY, CALENDARBFWHY)

	ID	CNTRY	PHASE	CALENDARKEWHY	CALENDARBFWHY
	<int></int>	<chr></chr>	<chr></chr>	<chr+lbl></chr+lbl>	<chr+lbl></chr+lbl>
1	1	BF	1	пп	п ппппппп
2	1	BF	2		" ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
3	2	BF	1	пп	",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
4	2	BF	2		",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
5	3	BF	1	пп	
6	3	BF	2		пп
7	4	BF	1		",,,,,,,,,,,,,,1,,,,,,,,,,,,,,,,,,,,,"
8	4	BF	2		",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
9	5	BF	1		" <i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>
10	5	BF	2		пп

And, because our CALSTART and CALSTOP variables were also named with the prefix "CAL", they have been pivoted as well.

cals %>% select(ID, CNTRY, PHASE, CALSTART, CALSTOP)

# 4	A tibb	le: 35,	,450 ×	5	
	ID	CNTRY	PHASE	CALSTART	CALSTOP
	<int></int>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>
1	1	BF	1	1417	1442
2	1	BF	2	1417	1453
3	2	BF	1	1417	1441
4	2	BF	2	1417	1453
5	3	BF	1	1417	1441
6	3	BF	2	1417	1453
7	4	BF	1	1417	1441
8	4	BF	2	1417	1452
9	5	BF	1	1417	1441
10	5	BF	2	1417	1453
# .	. with	35,440) more	rows	

6.4.2 Merge Countries

We'll now pivot a second time, leaving only two columns representing data collected from all four countries: we'll call the **Contraceptive Calendar** FPSTATUS, and we'll call the **Discontinuation Calendar** WHYSTOP. The suffix labeling the country for each variable will be stripped and placed in a new column, CNTRY_CAL.

- FPSTATUS Calendar string derived from the main Contraceptive Calendar
- WHYSTOP Calendar string derived from the Discontinuation Calendar

```
cals <- cals %>%
  rename_with(
    ~paste0(.x, "FPSTATUS"),
    .cols = starts_with("CALENDAR") & !ends_with("WHY")
) %>%
  rename_with(
    ~paste0(.x, "STOP"),
    .cols = starts_with("CALENDAR") & ends_with("WHY")
) %>%
  pivot_longer(
    cols = starts_with("CALENDAR"),
    names_pattern = "CALENDAR(..)(.*)",
    names_to = c("CNTRY_CAL", ".value"),
    values_to = "CALENDAR_STRING"
  )
```

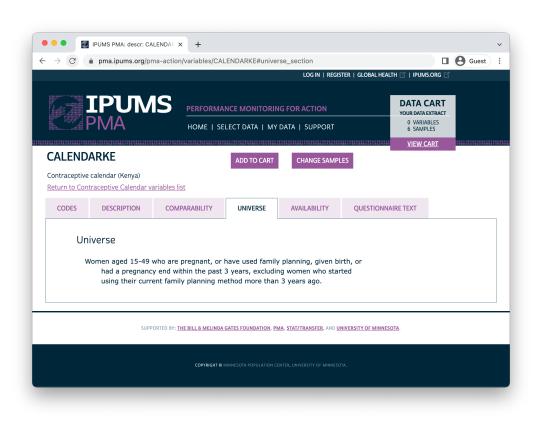
Notice that each woman now occupies *eight rows*: that's four country calendars per phase.

cals

# A tibble: 141,800 × 8								
	ID	CNTRY	PHASE	CALSTART	CALSTOP	CNTRY_CAL	FPSTATUS	WHYSTOP
	<int></int>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<chr+lbl></chr+lbl>	<chr+l></chr+l>
1	1	BF	1	1417	1442	KE		
2	1	BF	1	1417	1442	NG		
3	1	BF	1	1417	1442	BF	",,,,,,,,,,,0,0,0,0,0,0,0,	",,,,,,
4	1	BF	1	1417	1442	CD		пп
5	1	BF	2	1417	1453	KE		
6	1	BF	2	1417	1453	NG	пп	пп
7	1	BF	2	1417	1453	BF	",,,,,,,,,,,3,3,3,3,3,3,3.	",,,,,,
8	1	BF	2	1417	1453	CD		пп
9	2	BF	1	1417	1441	KE	пп	пп
10	2	BF	1	1417	1441	NG		пп
# with 141,790 more rows								

We'll remove extra rows where the two-letter ISO code in CNTRY does not match the value in our new variable CNTRY_CAL. Finally, leaves all women with only two rows each.

```
cals <- cals %>%
 filter(CNTRY CAL == CNTRY) %>%
 select(-CNTRY CAL)
cals
# A tibble: 35,450 × 7
   ID CNTRY PHASE CALSTART CALSTOP FPSTATUS
                                          WHYSTOP
 <int> <chr> <dbl> <dbl> <dbl> <chr+lbl>
                                          <chr+l>
             1
   1 BF 1
2
   1 BF 2
             3
   2 BF 1
             1417 1441 ",,,,,,,,,P,P,P,P,P,P,P,0,0,0,0...",,,,,...
             1417 1453 ",,,,,,,,,5,5,5,5,5,5,5,5,5,B,... ",,,,,...
4
   2 BF 2
             5
   3 BF 1
             1417 1453 ""
                                          .....
   3 BF 2
6
   4 BF 1
7
             1417 1441 ",,,,,,,,,,0,0,0,5,5,5,5,5,5,5,5,5,...",,,,,...
   4 BF 2
8
             1417
                   9
   5 BF 1
             1417
                   1453 ""
   5 BF
       2
10
              1417
# ... with 35,440 more rows
```


We're nearly ready to split each string into more usable variables for our analysis. But, before we do so: you might notice that there are still some calendars represented by empty character strings "" (see FPSTATUS in rows 6 and 10 above). These are cases where calendar data are not available.

6.4.3 Blank Strings

There are two reasons why a woman's calendar might be unavailable.

First, these women might be "NIU (not in universe)", as described on the IPUMS PMA UNIVERSE tab for each country's contraceptive calendar. Generally, NIU cases are women who reported no qualifying event during the calendar period: a blank string could indicate that she was never pregnant and never adopted or discontinued a family planning method in any month during that period.

The **universe tab** explains why some cases are "NIU (not in universe)".

Second, a blank might reflect **missing** data, like the duration of a pregnancy or an episode of continuous contraceptive use. Contraceptive calendars **do not contain missing values for individual months**, so you'll find the complete calendar missing if data from any one month was missing.

About 1 in every 5 calendars in our dataset cals is blank "" for one of the two reasons mentioned above.

In some research applications, you might want to complete the empty calendars for women who were NIU.

For example: if a woman used the contraceptive pill from the beginning of the calendar period continuously through the day of the interview, her calendar is currently blank because she neither started nor stopped using the pill in that time span. You might want to fill her calendar with the value 7 repeated once for every month between CALSTART and CALSTOP.

Similarly, we can complete all calendars for women who never used a family planning method and were never pregnant during the calendar period: in this case, we'll repeat the value Ø.

Note, however, that it is *not* possible to complete calendars for women who experienced birth or pregnancy termination during the calendar period. If these calendars are blank, we cannot determine the duration of the pregnancy or whether any family planning method was used prior to the pregnancy. We'll flag these cases with a new variable we'll call CALMISSING.

• CALMISSING - Indicates whether a blank calendar cannot be completed from other variables

We'll begin by attaching all of the CMC variables we created above (except INTFQCMC) along with the variables PREGNANT and FPCURREFFMETHRC. In order to match the format of cals, we'll again use pivot_longer to create separate rows for the dates collected from each PHASE.

```
cals <- dat %>%
select(
    ID, matches("CMC") & !matches("INTFQ"),
    starts_with("PREGNANT"), starts_with("FPCURREFFMETHRC"),
) %>%
pivot_longer(
    !ID,
    names_pattern = "(.*)_(.*)",
    names_to = c(".value", "PHASE")
) %>%
full_join(cals, by = c("ID", "PHASE"))
```

Now, we'll create CALMISSING to indicate whether women with an empty value "" in FPSTATUS were *actually* pregnant or adopted a family planning method at some point during the calendar period. In other words: we'll test whether any one of our CMC variables shows an event that occurred after CALSTART, but is not recorded in FPSTATUS. Likewise, this check will determine whether any such women are *currently* pregnant.

```
cals <- cals %>%
mutate(
    CALMISSING = FPSTATUS == "" & WHYSTOP == "" & {
    PREGNANT == 1 | if_any(ends_with("CMC"), ~!is.na(.x) & .x >= CALSTART)
    }
)
```

Let's use glimpse to take a closer look at the data collected for the woman row 6, whose Phase 2 FPSTATUS calendar is an empty string.

```
cals %>% slice(6) %>% glimpse()
```

```
Rows: 1
Columns: 17
                    <int> 3
$ ID
                    <chr> "2"
$ PHASE
$ KID1STBIRTHCMC <dbl> NA
$ FPBEGINUSECMC <dbl> NA
$ LASTBIRTHCMC <dbl> NA
$ OTHERBIRTHCMC <dbl> NA
$ PANELBIRTHCMC <dbl> NA
$ PREGENDCMC <dbl> NA
$ PANELPREGENDCMC <dbl> NA
$ PREGNANT <int+lbl> 0
$ FPCURREFFMETHRC <int+lbl> 999

        $ CNTRY
        <chr> "BF"

        $ CALSTART
        <dbl> 1417

        $ CALSTOP
        <dbl> 1453

$ FPSTATUS<chr+lbl> ""$ WHYSTOP<chr+lbl> ""$ CALMISSING<lgl> FALSE
                    <chr+lbl> ""
                    <chr+lbl> ""
```

We know that this woman has never given birth because all of the CMC variables related to birth are NA; moreover, PREGNANT == 0 indicates that she is not currently pregnant. She also has not used contraception, as indicated by FPCURREFFMETHRC and FPBEGINUSECMC. So, we have marked CALMISSING = FALSE because it's safe to auto-complete her calendar with the value 0 for every month between CALSTART and CALSTOP.

On the other hand, consider the woman in row 10, whose Phase 2 FPSTATUS calendar is also an empty string.

You can see in LASTBIRTHOMC that she gave birth in month 1422, 5 months after we'd hope to see reported events beginning in CALSTART == 1417. We have flagged this row with CALMISSING == TRUE because we won't be able to reconstruct her FPSTATUS calendar without knowing exactly when she became pregnant for this birth, or whether she was using a family planning method in any month prior.

Counting the number of women flagged by CALMISSING we see that we'll now be able to reduce the number of missing calendars from 1 in 5 cases to less than 1 in 20.

```
cals %>% count(CALMISSING, FPSTATUS == "") %>% mutate(prop = prop.table(n))
# A tibble: 3 × 4
CALMISSING `FPSTATUS == ""` n prop
<lgl> <lgl> <lgl> <int> <dbl>
1 FALSE FALSE 28173 0.795
2 FALSE TRUE 5816 0.164
3 TRUE TRUE 1461 0.0412
```

We'll now complete the blank calendars for women who were not flagged by CALMISSING. First, we'll recode FPCURREFFMETHRC to match the values used in the calendar:

```
cals <- cals %>%
mutate(
    FPCURREFFMETHRC = FPCURREFFMETHRC %>%
    zap_labels() %>%
    # NA if "No response or missing" (1 case)
    na_if(998) %>%
    # Note: 5 is used twice, and 6 is not used
    recode(
        "999" = 0, "101" = 1, "102" = 2, "111" = 3, "112" = 4, "121" = 5,
        "123" = 5, "131" = 7, "132" = 8, "141" = 9, "142" = 10, "151" = 11,
        "152" = 12, "160" = 13, "170" = 14, "210" = 30, "220" = 31, "240" = 39
    )
)
```

Then, we'll create CALDUR to calculate the duration (in months) of each woman's calendar.

• CALDUR - Duration of a woman's calendar (in months)

cals <- cals %>% mutate(CALDUR = CALSTOP - CALSTART + 1)

Finally, we'll complete each empty string in FPSTATUS for women not flagged by CALMISSING (leaving it the same otherwise). To clean-up, we'll also drop any variables that are no longer needed.

```
cals <- cals %>%
mutate(FPSTATUS = if_else(
    # If `FPSTATUS` is blank and `CALMISSING` is FALSE...
    FPSTATUS == "" & !CALMISSING,
    # Repeat "," and the value in `FPCURREFFMETHRC` as many times as `CALDUR`:
    str_c(",", FPCURREFFMETHRC) %>% str_dup(CALDUR),
    # Otherwise, recycle `FPSTATUS` as a character string:
    as.character(FPSTATUS)
)) %>%
select(-c(
    ends_with("CMC"), CALDUR, CALSTOP,
    CALMISSING, PREGNANT, FPCURREFFMETHRC
))
```

Returning to our example, row 6 is now completed with the value 0, excluding the first month (we leave this blank because this woman's interview was one month before the final month of Phase 2 data collection in Burkina Faso). Row 10 is left unchanged.

cals

	ID	PHASE	CNTRY	CALSTART	FPSTATUS	WHYSTOP
	<int></int>	<chr></chr>	<chr></chr>	<dbl></dbl>	<chr></chr>	<chr+l></chr+l>
1	1	1	BF	1417	",,,,,,,,,,,0,0,0,0,0,0,0,0,0,0,0,0,0,B,P,P,	",,,,,,
2	1	2	BF	1417	",,,,,,,,,,,,,,3,3,3,3,3,3,0,0,0,0,0,0,0	",,,,,,
3	2	1	BF	1417	",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	",,,,,,
4	2	2	BF	1417	",,,,,,,,,,,5,5,5,5,5,5,5,5,8,P,P,P,P,	",,,,,,
5	3	1	BF	1417	",,,,,,,,,,,,,0,0,0,0,0,0,0,0,0,0,0,0,0	
6	3	2	BF	1417	",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	
7	4	1	BF	1417	",,,,,,,,,,,,0,0,0,5,5,5,5,5,5,5,5,5,5,5	",,,,,,
8	4	2	BF	1417	",,,,,,,,,,,,,,,0,0,0,0,0,0,0,0,0,0,0,0	",,,,,,
9	5	1	BF	1417	",,,,,,,,,,,,,,0,0,0,0,0,0,0,0,0,0,0,0,	",,,,,,
10	5	2	BF	1417		

6.4.4 Split Months into Columns

We've now completed as many of the blank calendars as we can, so it's time to transform each calendar string into variables that will be usable in survival analysis.

We'll begin with another pivot_longer function to position FPSTATUS and WHYSTOP together in a single column. Notice the temporary column name describes the type of calendar that appears in the temporary column value.

```
cals <- cals %>% pivot_longer(c("FPSTATUS", "WHYSTOP"))
```

cals

	ID	PHASE	CNTRY	CALSTART	name	value
	<int> ·</int>	<chr></chr>	<chr></chr>	<dbl></dbl>	<chr></chr>	<chr+lbl></chr+lbl>
1	1 1	1	BF	1417	FPSTATUS	",,,,,,,,,,,0,0,0,0,0,0,0,0,0,0,0,0,0,0
2	1 1	1	BF	1417	WHYSTOP	""
3	1 2	2	BF	1417	FPSTATUS	",,,,,,,,,,,,3,3,3,3,3,3,0,0,0,0,0,0,0,0
4	1 2	2	BF	1417	WHYSTOP	" ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
5	2	1	BF	1417	FPSTATUS	",,,,,,,,,,,,P,P,P,P,P,P,P,0,0,0,0,0,0,0
6	2	1	BF	1417	WHYSTOP	",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
7	2 2	2	BF	1417	FPSTATUS	",,,,,,,,,,,,5,5,5,5,5,5,5,5,5,5,B,P,P,P,P
8	2 2	2	BF	1417	WHYST0P	",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
9	3	1	BF	1417	FPSTATUS	",,,,,,,,,,,,0,0,0,0,0,0,0,0,0,0,0,0,0,
10	3	1	BF	1417	WHYSTOP	пп

Now, we'll use separate to split each string into several columns. You can manually specify the maximum number of columns you'll need to hold all of the calendars in your data extract, or you can let R determine the max length of each string.³⁵ We'll call this number ncols.

```
# How many columns would be needed for the single longest calendar?
ncols <- max(str_count(cals$value, ","), na.rm = TRUE) + 1
ncols
```

[1] 48

³⁵Here, we're counting the number of commas in each string, so we add +1 (e.g. 0,0,0 has two commas, but three responses).

In separate, we tell R to split each string into 48 columns: if any given calendar has fewer than 48 values, we fill the left-most columns with the value NA as needed.

```
# Create one column for every month in the longest calendar
cals <- cals %>%
  separate(value, into = paste0("cal", ncols:1), sep = ",", fill = "left", )
```

cals

# A	tibb	le: 70,	,900 ×	53								
	ID	PHASE	CNTRY	CALSTART	name	cal48	cal47	cal46	cal45	cal44	cal43	cal42
	<int></int>	<chr></chr>	<chr></chr>	<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>
1	1	1	BF	1417	FPSTATUS	<na></na>	<na></na>	<na></na>	<na></na>	<na></na>	<na></na>	<na></na>
2	1	1	BF	1417	WHYSTOP	<na></na>	<na></na>	<na></na>	<na></na>	<na></na>	<na></na>	<na></na>
3	1	2	BF	1417	FPSTATUS							
4	1	2	BF	1417	WHYSTOP							
5	2	1	BF	1417	FPSTATUS	<na></na>	<na></na>	<na></na>	<na></na>	<na></na>	<na></na>	<na></na>
6	2	1	BF	1417	WHYSTOP	<na></na>	<na></na>	<na></na>	<na></na>	<na></na>	<na></na>	<na></na>
7	2	2	BF	1417	FPSTATUS							
8	2	2	BF	1417	WHYSTOP							
9	3	1	BF	1417	FPSTATUS	<na></na>	<na></na>	<na></na>	<na></na>	<na></na>	<na></na>	<na></na>
10	3	1	BF	1417	WHYSTOP	<na></na>	<na></na>	<na></na>	<na></na>	<na></na>	<na></na>	<na></na>
#	with	70,890	0 more	rows, and	d 41 more	varia	oles:	cal41 ·	<chr>,</chr>	cal40	<chr></chr>	,
#	cal39) <chr< td=""><td>>, cal3</td><td>8 <chr>,</chr></td><td>cal37 <c< td=""><td>nr>, ca</td><td>al36 <</td><td>chr>,</td><td>cal35</td><td><chr>,</chr></td><td></td><td></td></c<></td></chr<>	>, cal3	8 <chr>,</chr>	cal37 <c< td=""><td>nr>, ca</td><td>al36 <</td><td>chr>,</td><td>cal35</td><td><chr>,</chr></td><td></td><td></td></c<>	nr>, ca	al36 <	chr>,	cal35	<chr>,</chr>		
#	cal34	4 <chr< td=""><td>>, cal3</td><td>3 <chr>,</chr></td><td>cal32 <c< td=""><td>nr>, ca</td><td>al31 <</td><td>chr>,</td><td>cal30 🗸</td><td><chr>,</chr></td><td></td><td></td></c<></td></chr<>	>, cal3	3 <chr>,</chr>	cal32 <c< td=""><td>nr>, ca</td><td>al31 <</td><td>chr>,</td><td>cal30 🗸</td><td><chr>,</chr></td><td></td><td></td></c<>	nr>, ca	al31 <	chr>,	cal30 🗸	<chr>,</chr>		
#	cal29) <chr< td=""><td>>, cal2</td><td>8 <chr>,</chr></td><td>cal27 <c< td=""><td>nr>, ca</td><td>al26 <</td><td>chr>,</td><td>cal25 🗸</td><td><chr>,</chr></td><td></td><td></td></c<></td></chr<>	>, cal2	8 <chr>,</chr>	cal27 <c< td=""><td>nr>, ca</td><td>al26 <</td><td>chr>,</td><td>cal25 🗸</td><td><chr>,</chr></td><td></td><td></td></c<>	nr>, ca	al26 <	chr>,	cal25 🗸	<chr>,</chr>		
#	cal24	4 <chr< td=""><td>>, cal2</td><td>3 <chr>,</chr></td><td>cal22 <c< td=""><td>nr>, ca</td><td>al21 <</td><td>chr>,</td><td>cal20 <</td><td><chr>,</chr></td><td></td><td></td></c<></td></chr<>	>, cal2	3 <chr>,</chr>	cal22 <c< td=""><td>nr>, ca</td><td>al21 <</td><td>chr>,</td><td>cal20 <</td><td><chr>,</chr></td><td></td><td></td></c<>	nr>, ca	al21 <	chr>,	cal20 <	<chr>,</chr>		
#	cal19) <chr< td=""><td>>, cal1</td><td>8 <chr>,</chr></td><td>cal17 <c< td=""><td>nr>, ca</td><td>al16 <</td><td>chr>,</td><td>cal15 🗸</td><td><chr>,</chr></td><td></td><td></td></c<></td></chr<>	>, cal1	8 <chr>,</chr>	cal17 <c< td=""><td>nr>, ca</td><td>al16 <</td><td>chr>,</td><td>cal15 🗸</td><td><chr>,</chr></td><td></td><td></td></c<>	nr>, ca	al16 <	chr>,	cal15 🗸	<chr>,</chr>		
#	cal14	4 <chr< td=""><td>>, cal1</td><td>3 <chr>,</chr></td><td>cal12 <c< td=""><td>nr>, ca</td><td>al11 <</td><td>chr>,</td><td>cal10 -</td><td><chr>,</chr></td><td></td><td></td></c<></td></chr<>	>, cal1	3 <chr>,</chr>	cal12 <c< td=""><td>nr>, ca</td><td>al11 <</td><td>chr>,</td><td>cal10 -</td><td><chr>,</chr></td><td></td><td></td></c<>	nr>, ca	al11 <	chr>,	cal10 -	<chr>,</chr>		

As you can see, this produced 48 columns named cal48 to cal1, where cal1 is the earliest month in chronological time. You'll notice some blank strings for women whose calendar included empty placeholders (e.g. ,,,,,,3,3,...). We'll use across to convert blank values "" to NA as well.

```
cals <- cals %>%
  mutate(across(
    starts_with("cal", ignore.case = FALSE),
    ~na_if(.x, "")
))
```

6.4.5 One Row per Month

Finally, we'll want to use pivot_longer one more time, reorganizing the data for each month into a separate row. This will allow us to label each month with the correct CMC value, and to align overlapping calendars collected in Phase 1 and Phase 2.

Here, we place each month into a single column temporarily called value. The label shown in name describes whether a particular value originated in the FPSTATUS or WHYSTOP calendar. We strip the numeric suffix from each column to create MONTH, which indicates the sequential month associated with each value.

```
cals <- cals %>%
pivot_longer(
   starts_with("cal", ignore.case = FALSE),
   names_to = "MONTH",
   names_prefix = "cal"
)
```

cals

```
# A tibble: 3,403,200 × 7
                                      ID PHASE CNTRY CALSTART name
                                                                                                                                                                                                                                            MONTH value
                  <int> <chr> <dbl> <chr> <chr> <dbl> <chr> <
                     1 1 BF
                                                                                                                                             1417 FPSTATUS 48
      1
                                                                                                                                                                                                                                                                                             <NA>
                                    11 BF
      2
                                                                                                                                                  1417 FPSTATUS 47 <NA>

      1417
      FPSTATUS
      47
      <NA>

      1417
      FPSTATUS
      46
      <NA>

      1417
      FPSTATUS
      45
      <NA>

      1417
      FPSTATUS
      44
      <NA>

      1417
      FPSTATUS
      44
      <NA>

      1417
      FPSTATUS
      43
      <NA>

      1417
      FPSTATUS
      43
      <NA>

      1417
      FPSTATUS
      43
      <NA>

      1417
      FPSTATUS
      41
      <NA>

      1417
      FPSTATUS
      41
      <NA>

      1417
      FPSTATUS
      41
      <NA>

                                    11 BF
      3
      4
                                   11 BF
                                  1 1 BF
      5
      6
                                  11 BF
      7
                                   11 BF
      8
                                   11 BF
    9
                                    1 1
                                                                                                                                                   1417 FPSTATUS 40 <NA>
                                                                                 BF
                                                                                              BF 1417 FPSTATUS 39
10
                                           1 1
                                                                                                                                                                                                                                                                                            <NA>
# ... with 3,403,190 more rows
```

From MONTH and CALSTART, we'll derive CALCMC to mark the CMC for each value.

• CALCMC - CMC for each month in the contraceptive / discontinuation calendar

cals <- cals %>% mutate(CALCMC = CALSTART + as.integer(MONTH) - 1)

cals

# A	A tibb]	le: 3,4	403,200	0 × 8				
	ID	PHASE	CNTRY	CALSTART	name	MONTH	value	CALCMC
	<int></int>	<chr></chr>	<chr></chr>	<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>
1	1	1	BF	1417	FPSTATUS	48	<na></na>	1464
2	1	1	BF	1417	FPSTATUS	47	<na></na>	1463
3	1	1	BF	1417	FPSTATUS	46	<na></na>	1462
4	1	1	BF	1417	FPSTATUS	45	<na></na>	1461
5	1	1	BF	1417	FPSTATUS	44	<na></na>	1460
6	1	1	BF	1417	FPSTATUS	43	<na></na>	1459
7	1	1	BF	1417	FPSTATUS	42	<na></na>	1458
8	1	1	BF	1417	FPSTATUS	41	<na></na>	1457
9	1	1	BF	1417	FPSTATUS	40	<na></na>	1456
10	1	1	BF	1417	FPSTATUS	39	<na></na>	1455
#	. with	3,403,	,190 mc	ore rows				

Finally, we'll use pivot_wider to align the months for each available calendar, and then arrange each woman's calendar by CALCMC. If any month includes no value from either Phase 1 or Phase 2, we'll use filter to remove it from our data frame (these are placeholder values for future months).

In its final format, cals contains one row for every month covered by the contraceptive calendar from either Phase 1 or Phase 2. You'll notice that the two calendars contain overlapping months, as with the dates between CALCMC 1417 and 1442 for the first woman shown below.

```
cals <- cals %>%
  select(ID, PHASE, CALCMC, name, value) %>%
  pivot_wider(
    names_from = c(name, PHASE),
    values_from = value
  ) %>%
  filter(!(is.na(FPSTATUS_1) & FPSTATUS_2 == "")) %>%
  arrange(ID, desc(CALCMC))
```

	<int></int>	<dbl></dbl>	<chr></chr>		<chr></chr>	<chr></chr>	<chr></chr>	
1	1	1453	<na></na>		<na></na>	3	<na></na>	
2	1	1452	<na></na>		<na></na>	3	<na></na>	
3	1	1451	<na></na>		<na></na>	3	<na></na>	
4	1	1450	<na></na>		<na></na>	3	<na></na>	
5	1	1449	<na></na>		<na></na>	3	<na></na>	
6	1	1448	<na></na>		<na></na>	3	<na></na>	
7	1	1447	<na></na>		<na></na>	0	<na></na>	
8	1	1446	<na></na>		<na></na>	0	<na></na>	
9	1	1445	<na></na>		<na></na>	0	<na></na>	
10	1	1444	<na></na>		<na></na>	0	<na></na>	
11	1	1443	<na></na>		<na></na>	0	<na></na>	
12	1	1442	0		<na></na>	0	<na></na>	
13	1	1441	0		<na></na>	0	<na></na>	
14	1	1440	0		<na></na>	0	<na></na>	
15	1	1439	0		<na></na>	0	<na></na>	
16	1	1438	0		<na></na>	0	<na></na>	
17	1	1437	0		<na></na>	0	<na></na>	
18	1	1436	0		<na></na>	0	<na></na>	
19	1	1435	0		<na></na>	0	<na></na>	
20	1	1434	0		<na></na>	0	<na></na>	
21	1	1433	0		<na></na>	0	<na></na>	
22	1	1432	0		<na></na>	0	<na></na>	
23	1	1431	0		<na></na>	0	<na></na>	
24	1	1430	В		<na></na>	В	<na></na>	
25	1	1429	Р		<na></na>	Р	<na></na>	
26	1	1428	Р		<na></na>	Р	<na></na>	
27	1	1427	Р		<na></na>	Р	<na></na>	
28	1	1426	Р		<na></na>	Р	<na></na>	
29	1	1425	Р		<na></na>	Р	<na></na>	
30	1	1424	Р		<na></na>	Р	<na></na>	
31	1	1423	Р		<na></na>	Р	<na></na>	
32	1	1422	Р		<na></na>	0	<na></na>	
33	1	1421	0		<na></na>	0	<na></na>	
34	1	1420	0		<na></na>	0	<na></na>	
35	1	1419	0		<na></na>	0	<na></na>	
36	1	1418	0		<na></na>	0	<na></na>	
37	1	1417	0		<na></na>	0	<na></na>	
38	2	1452	<na></na>		<na></na>	5	<na></na>	
39	2	1451	<na></na>		<na></na>	5	<na></na>	
40	2		<na></na>		<na></na>	5	<na></na>	
#	. with	769,596	6 more	rows				

6.5 ANALYSIS

There are many ways to work with the contraceptive calendar data once you've formatted it this way. For example, we just saw that the FPSTATUS_1 and FPSTATUS_2 columns are a *nearly* perfect match for the woman marked ID == 1: she reports that she used no method of contraception between month 1417 until month 1421. Then, in Phase 1 she recalled that she became pregnant in month 1422; in Phase 2, she instead recalled that she became pregnant in month 1423. In both phases, she reports that she gave birth in month 1430, and then returned to using no family planning method.

We encourage researchers to explore sources of **recall bias** that may account for discrepancies between the Phase 1 and Phase 2 calendars. Generally, we assume that individuals remember events more reliably when they are in recent memory, but this may not always be true! For more on the reliability of responses in contraceptive calendars across PMA samples, we strongly recommend checking out work by Anglewicz et al..

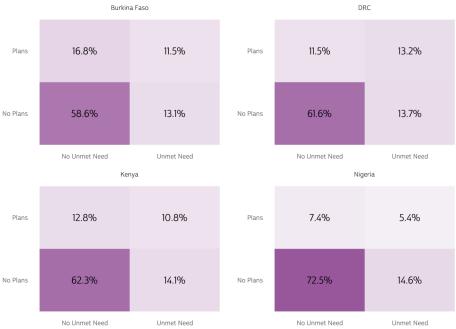
Here, we'd like to highlight just one way that the PMA panel design might help researchers understand patterns in the calendar data. In previous chapters, we saw that IPUMS PMA includes variables indicating whether women had unmet need or plans to adopt a contraceptive method in each phase. We'll now examine these variables at Phase 1, and use the **Contraceptive Calendar** data from Phase 2 to test whether either factor influences the adoption rate of contraceptive methods reported one year later.

First, we'll need to identify women who were not using any family planning method at Phase 1. These are cases where FPCURREFFMETHRC_1 is coded 999 for "NIU (not in universe)". We'll drop any other cases from our original data frame dat, and we'll call this new data frame nonusers.

nonusers <- dat %>% filter(FPCURREFFMETHRC_1 == 999)

We'll follow steps in Chapter 4 to identify women who meet the PMA criteria for "unmet need" in UNMETYN_1, and also those who planned to adopt a family planning method within one year at Phase 1 as shown in FPPLANVAL_1 and FPPLANWHEN_1.

```
nonusers <- nonusers %>%
mutate(
    UNMETYN_1 = UNMETYN_1 == 1,
    FPPLANYR_1 = case_when(
        FPPLANWHEN_1 == 1 & FPPLANVAL_1 <= 12 ~ TRUE, # Within 12 months
        FPPLANWHEN_1 == 2 & FPPLANVAL_1 == 1 ~ TRUE, # Within 1 year
        FPPLANWHEN_1 %in% c(3, 4) ~ TRUE, # Soon / now, after current pregnancy
        TRUE ~ FALSE # Includes date unknown, no response, or no intention (FPUSPLAN)
    )
</pre>
```


Also in Chapter 4, we demonstrated how to create a theme for graphics built with ggplot2. We'll do so again here, creating theme_pma.

Before we begin our analysis, let's check the proportion of nonusers in each country who had unmet need or plans to adopt a family planning method within one year at Phase 1.

```
nonusers %>%
 group by(COUNTRY) %>%
 count(UNMETYN 1, FPPLANYR 1) %>%
 mutate(
   prop = prop.table(n),
   UNMETYN 1 = UNMETYN 1 %>% if else("Unmet Need", "No Unmet Need"),
   FPPLANYR_1 = FPPLANYR_1 %>% if_else("Plans", "No Plans"),
 ) %>%
 ggplot(aes(x = UNMETYN_1, y = FPPLANYR_1)) +
 geom_tile(fill = "#98579BB0", aes(alpha = prop)) +
 geom text(aes(label = scales::percent(prop, 0.1))) +
 facet_wrap(vars(COUNTRY), scales = "free") +
 labs(
   title = "Non-users: Unmet Need and Plans to Adopt a Method within 1 Year",
   subtitle = "Percentage among sampled women not using a method at Phase 1",
   x = NULL
 ) +
 theme pma %+replace%
 theme(panel.grid = element blank(), legend.position = "none")
```

Non-users: Unmet Need and Plans to Adopt a Method within 1 Year

Percentage among sampled women not using a method at Phase 1

As you can see, a majority of Phase 1 nonusers in each country had no unmet need and no plans to adopt a method within the next year. We might expect these women to be *least likely* to adopt a method within the subsequent months covered by the Phase 2 contraceptive calendar.

Conversely, we might expect women who planned to adopt a method would be *most likely* to adopt one within the year, but also that this might be mitigated by factors related to unmet need.

Let's now attach the contraceptive calendar data from Phase 2 to nonusers. We'll exclude months before INTFQCMC_1 and women we identified with CALMISSING (where all values in FPSTATUS_2 are now NA). Finally, we'll exclude women for whom either UNMETYN_1 or FPPLANYR_1 is missing, NIU, or otherwise coded NA.

```
nonusers <- nonusers %>%
select(ID, COUNTRY, INTFQCMC_1, UNMETYN_1, FPPLANYR_1) %>%
full_join(cals %>% select(ID, FPSTATUS_2, CALCMC), by = "ID") %>%
filter(
    CALCMC >= INTFQCMC_1,
    !if_any(c(FPSTATUS_2, UNMETYN_1, FPPLANYR_1), is.na)
)
```

6.5.1 Right-censoring

A key concept in survival analysis is the idea of **right-censoring**, which refers to cases where the event of interest happens after the last observation point (or no at all). It's important that we identify these cases now so that we don't mistake them for women who first adopted a method during the month of the Phase 2 interview.

First, we'll want to identify the earliest month in which each woman reported using a method, if she did so at all. To do this, we'll begin by identifying months of contraceptive USE as those where FPSTATUS_2 contains any value other than 0, B, P, or T.

• USE - Indicates a month of contraceptive use

```
nonusers <- nonusers %>% mutate(USE = !FPSTATUS_2 %in% c("0", "B", "P", "T"))
nonusers
```

# A	tibb	le: 116,9	948 ×	8					
	ID	COUNTRY		INTFQCMC_1	UNMETYN_1	FPPLANYR_1	FPSTATUS_2	CALCMC	USE
	<int></int>	<fct></fct>		<dbl></dbl>	<lgl></lgl>	<lgl></lgl>	<chr></chr>	<dbl></dbl>	<lgl></lgl>
1	1	Burkina	Faso	1442	FALSE	TRUE	3	1453	TRUE
2	1	Burkina	Faso	1442	FALSE	TRUE	3	1452	TRUE
3	1	Burkina	Faso	1442	FALSE	TRUE	3	1451	TRUE
4	1	Burkina	Faso	1442	FALSE	TRUE	3	1450	TRUE
5	1	Burkina	Faso	1442	FALSE	TRUE	3	1449	TRUE
6	1	Burkina	Faso	1442	FALSE	TRUE	3	1448	TRUE
7	1	Burkina	Faso	1442	FALSE	TRUE	0	1447	FALSE
8	1	Burkina	Faso	1442	FALSE	TRUE	0	1446	FALSE
9	1	Burkina	Faso	1442	FALSE	TRUE	0	1445	FALSE
10	1	Burkina	Faso	1442	FALSE	TRUE	0	1444	FALSE
11	1	Burkina	Faso	1442	FALSE	TRUE	0	1443	FALSE
12	1	Burkina	Faso	1442	FALSE	TRUE	0	1442	FALSE
13	2	Burkina	Faso	1441	FALSE	FALSE	5	1452	TRUE
14	2	Burkina	Faso	1441	FALSE	FALSE	5	1451	TRUE
15	2	Burkina	Faso	1441	FALSE	FALSE	5	1450	TRUE
#	with	116,933	more	rows					

Above, we can see that 6 months pass before the woman with ID == 1 adopts a a method (code 3 for implant). However, some women *never* adopt a method before the Phase 2 interview. These cases are right-censored.

Ultimately, we'll want to include only one row for each woman in our analysis. For those who adopted a method, we'll need to find the earliest month of USE. For right-censored cases, we'll include only the month of the Phase 2 interview.

We begin by numbering each month in a variable call MO, counting upward from Ø for the Phase 1 interview. We'll then create an exact copy of MO called USEMO that is NA for months of non-USE.

- M0 Sequentially numbered month
- USEMO Sequentially numbered month (labeled only for months of use)

```
nonusers <- nonusers %>%
mutate(
    M0 = CALCMC - INTFQCMC_1,
    USEM0 = case_when(USE ~ M0)
) %>%
select(-c(CALCMC, INTFQCMC_1))
```

nonusers

# A	tibb	le: 116,9	948 ×	8					
	ID	COUNTRY		UNMETYN_1	FPPLANYR_1	FPSTATUS_2	USE	MO	USEM0
<	int>	<fct></fct>		<lgl></lgl>	<lgl></lgl>	<chr></chr>	<lgl></lgl>	<dbl></dbl>	<dbl></dbl>
1	1	Burkina	Faso	FALSE	TRUE	3	TRUE	11	11
2	1	Burkina	Faso	FALSE	TRUE	3	TRUE	10	10
3	1	Burkina	Faso	FALSE	TRUE	3	TRUE	9	9
4	1	Burkina	Faso	FALSE	TRUE	3	TRUE	8	8
5	1	Burkina	Faso	FALSE	TRUE	3	TRUE	7	7
6	1	Burkina	Faso	FALSE	TRUE	3	TRUE	6	6
7	1	Burkina	Faso	FALSE	TRUE	0	FALSE	5	NA
8	1	Burkina	Faso	FALSE	TRUE	0	FALSE	4	NA
9	1	Burkina	Faso	FALSE	TRUE	0	FALSE	3	NA
10	1	Burkina	Faso	FALSE	TRUE	0	FALSE	2	NA
11	1	Burkina	Faso	FALSE	TRUE	0	FALSE	1	NA
12	1	Burkina	Faso	FALSE	TRUE	0	FALSE	0	NA
13	2	Burkina	Faso	FALSE	FALSE	5	TRUE	11	11
14	2	Burkina	Faso	FALSE	FALSE	5	TRUE	10	10
15	2	Burkina	Faso	FALSE	FALSE	5	TRUE	9	9
#	with	116,933	more	rows					

The minimum value in USEMO is the month of adoption, and we'll flag this month with a variable called EVENT. However, if *no method was adopted* we'll need to flag the maximum value in MO with both EVENT *and* an additional variable indicating that the event is right-censored. This final variable, which we'll call RC, helps functions in the survival package distinguish women who never adopted a method before Phase 2.

- EVENT Date of method adoption or Phase 2 interview, whichever is first
- RC Indicates whether the EVENT is right-censored

Finally, we'll now drop every row except for those matching EVENT. This leaves one row for each woman in nonusers.

```
nonusers <- nonusers %>%
group_by(ID) %>%
mutate(
    EVENT = ifelse(any(USE), min(USEM0, na.rm = T), max(M0)),
    RC = case_when(EVENT == M0 ~ !USE)
) %>%
filter(EVENT == M0)
```

nonusers

# A	tibb	le: 9,213	× 10	0							
# 0	iroups	: ID [9	,213]								
	ID	COUNTRY		UNMETYN_1	FPPLANYR_1	FPSTA ¹	USE	MO	USEM0	EVENT	RC
	<int></int>	<fct></fct>		<lgl></lgl>	<lgl></lgl>	<chr></chr>	<lgl></lgl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<lgl></lgl>
1	1	Burkina	Faso	FALSE	TRUE	3	TRUE	6	6	6	FALSE
2	2	Burkina	Faso	FALSE	FALSE	5	TRUE	3	3	3	FALSE
3	3	Burkina	Faso	FALSE	FALSE	0	FALSE	12	NA	12	TRUE
4	6	Burkina	Faso	FALSE	FALSE	0	FALSE	12	NA	12	TRUE
5	7	Burkina	Faso	FALSE	FALSE	0	FALSE	11	NA	11	TRUE
6	8	Burkina	Faso	TRUE	FALSE	0	FALSE	11	NA	11	TRUE
7	13	Burkina	Faso	FALSE	TRUE	5	TRUE	0	0	0	FALSE
8	16	Burkina	Faso	FALSE	FALSE	5	TRUE	8	8	8	FALSE
9	17	Burkina	Faso	FALSE	TRUE	0	FALSE	11	NA	11	TRUE
10	18	Burkina	Faso	FALSE	FALSE	0	FALSE	11	NA	11	TRUE
11	21	Burkina	Faso	FALSE	FALSE	0	FALSE	11	NA	11	TRUE
12	22	Burkina	Faso	FALSE	FALSE	0	FALSE	12	NA	12	TRUE
13	26	Burkina	Faso	FALSE	FALSE	0	FALSE	11	NA	11	TRUE
14	28	Burkina	Faso	FALSE	FALSE	0	FALSE	12	NA	12	TRUE
15	29	Burkina	Faso	FALSE	FALSE	0	FALSE	13	NA	13	TRUE
#	. with	9,198 mo	re ro	ows, and a	bbreviated	variable	name ¹	FPSTAT	US_2		

Above, only the women with IDs 1, 2, 13, and 16 ultimately adopted a method before Phase 2. All other visible cases are right-censored.

6.5.2 Survival Models

We'll now fit three survival models predicting the duration of continuous non-use for the women in nonusers: one model for UNMETYN_1, one for FPPLANYR_1, and one for their interaction effect, which we'll call INTERACT_1. For each model, the function survfit reports the likelihood that a baseline non-user would have adopted any family planning method at each month in the calendar period.

We'll run each model separately for each country, and we'll use broom::tidy to create a tidy summary table for each model.³⁶ Notice the function Surv(EVENT, !RC): this indicates that the EVENT occurs, but only if the case is not right-censored !RC.

```
adopt models <- nonusers %>%
 # Create a variable capturing the interaction between intentions and unmet need
 mutate(INTERACT_1 = case_when(
   UNMETYN_1 & FPPLANYR_1 ~ "Unmet Need, Plan",
   UNMETYN 1 & !FPPLANYR 1 ~ "Unmet Need, No Plan",
    !UNMETYN 1 & FPPLANYR 1 ~ "No Unmet Need, Plan",
    !UNMETYN 1 & !FPPLANYR 1 ~ "No Unmet Need, No Plan"
 )) %>%
 # Separate survival models for each country
 group by(COUNTRY) %>%
 summarise(
   unmet = survfit(Surv(EVENT, !RC) ~ UNMETYN_1, data = cur_group()) %>% list,
   plan = survfit(Surv(EVENT, !RC) ~ FPPLANYR 1, data = cur group()) %>% list,
    interact = survfit(Surv(EVENT, !RC) ~ INTERACT_1, data = cur_group()) %>% list
 ) %>%
 # Tidy the output and relabel `CNTRY` for the figure
 mutate(across(where(is.list), ~map(.x, broom::tidy)))
```

Let's start with the model featuring UNMETYN_1. If you unnest the unmet model output, you'll see a separate row for each month reported for women with UNMETYN_1=FALSE and UNMETYN_1=TRUE in the column labelled strata.

```
adopt_models %>%
  select(COUNTRY, unmet) %>%
  unnest(unmet) %>%
  filter(strata == "UNMETYN_1=FALSE") %>%
  select(-strata)
```

³⁶broom is installed, but not loaded, with the tidyverse.

# /	# A tibble: 59 × 9									
	COUNTRY		time	n.risk	n.event r	.censor	estimate	std.error	conf1	conf ²
	<fct></fct>		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	Burkina	Faso	0	2249	158	0	0.930	0.00580	0.940	0.919
2	Burkina	Faso	1	2091	20	0	0.921	0.00618	0.932	0.910
3	Burkina	Faso	2	2071	21	0	0.912	0.00657	0.923	0.900
4	Burkina	Faso	3	2050	25	0	0.900	0.00701	0.913	0.888
5	Burkina	Faso	4	2025	27	0	0.888	0.00747	0.902	0.875
6	Burkina	Faso	5	1998	22	0	0.879	0.00784	0.892	0.865
7	Burkina	Faso	6	1976	28	0	0.866	0.00829	0.880	0.852
8	Burkina	Faso	7	1948	26	0	0.855	0.00870	0.869	0.840
9	Burkina	Faso	8	1922	30	0	0.841	0.00916	0.857	0.826
10	Burkina	Faso	9	1892	37	0	0.825	0.00972	0.841	0.809
11	Burkina	Faso	10	1855	35	97	0.809	0.0102	0.826	0.793
12	Burkina	Faso	11	1723	27	907	0.797	0.0107	0.813	0.780
13	Burkina	Faso	12	789	5	687	0.792	0.0111	0.809	0.775
14	Burkina	Faso	13	97	3	71	0.767	0.0212	0.800	0.736
15	Burkina	Faso	14	23	0	23	0.767	0.0212	0.800	0.736
# .	. with 44	more	rows,	and al	obreviated	d variab	le names	¹ conf.high,	² conf.	low

Among non-users who had no unmet need at Phase 1, the column n.risk shows the total number of women remaining after the number of months passed in time. The column estimate shows the estimated probability that a randomly selected woman would remain in n.risk by that month (conf.high and conf.low report a 95% confidence interval by default).

For example, row 1 shows that there were 2249 women in the Phase 1 Burkina Faso sample who were not using family planning and had no unmet need. Among these, n.event shows that 158 adopted a family planning method less than one month after the interview: this leaves 93.0% of the group remaining before one full month had passed.

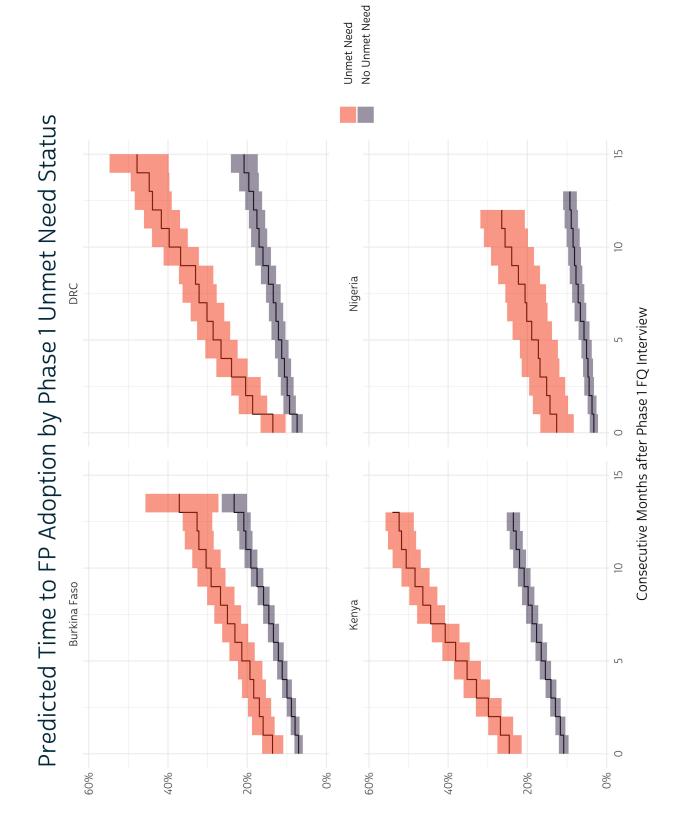
Note that column n.censor shows the number of right-censored cases at each month in time. For example, 97 cases in Burkina Faso are right-censored after 10 months: these are the women interviewed in the earliest month of Phase 2 data collection (December 2020). 23 cases in Burkina Faso are right-censored after 14 months: these are women interviewed in the last month (April 2020).

Let's look at non-users who *did* have unmet need at Phase 1.

```
adopt_models %>%
  select(COUNTRY, unmet) %>%
  unnest(unmet) %>%
  filter(strata == "UNMETYN_1=TRUE") %>%
  select(-strata)
```

# 4	# A tibble: 58 × 9									
	COUNTRY		time	n.risk	n.event	n.censor	estimate	<pre>std.error</pre>	conf¹	conf ²
	<fct></fct>		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	Burkina	Faso	0	632	86	0	0.864	0.0158	0.891	0.838
2	Burkina	Faso	1	546	15	0	0.840	0.0173	0.869	0.812
3	Burkina	Faso	2	531	6	0	0.831	0.0180	0.860	0.802
4	Burkina	Faso	3	525	9	0	0.816	0.0189	0.847	0.787
5	Burkina	Faso	4	516	6	0	0.807	0.0195	0.838	0.777
6	Burkina	Faso	5	510	13	0	0.786	0.0207	0.819	0.755
7	Burkina	Faso	6	497	11	0	0.769	0.0218	0.803	0.737
8	Burkina	Faso	7	486	12	0	0.75	0.0230	0.785	0.717
9	Burkina	Faso	8	474	11	0	0.733	0.0240	0.768	0.699
10	Burkina	Faso	9	463	15	0	0.709	0.0255	0.745	0.674
11	Burkina	Faso	10	448	8	21	0.696	0.0263	0.733	0.661
12	Burkina	Faso	11	419	11	257	0.678	0.0275	0.715	0.642
13	Burkina	Faso	12	151	1	135	0.673	0.0283	0.712	0.637
14	Burkina	Faso	13	15	1	12	0.629	0.0746	0.727	0.543
15	Burkina	Faso	14	2	0	2	0.629	0.0746	0.727	0.543
# .	. with 43	8 more	rows,	and al	bbreviate	d variab]	le names	¹ conf.high,	² conf.	low

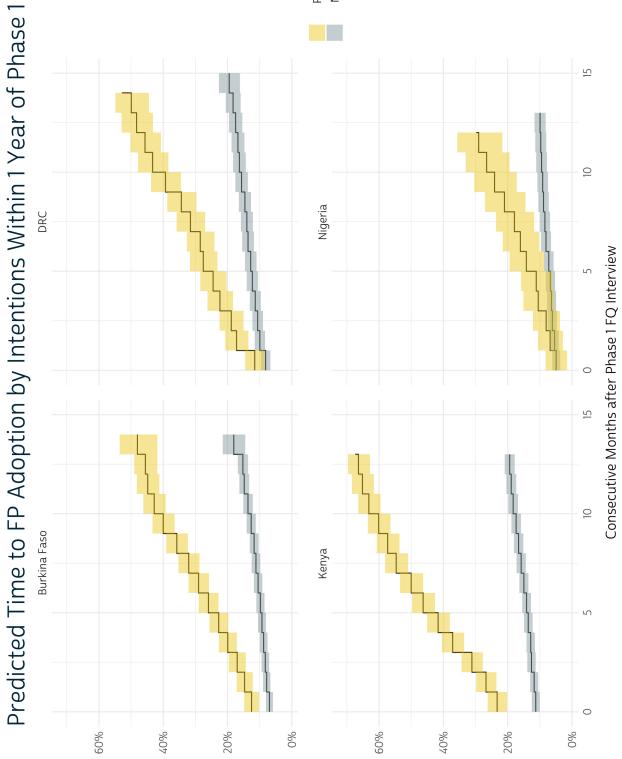
Here, we begin with 632 non-users who had unmet need at Phase 1. Among these, n.event shows that 86 adopted a family planning method less than one month after the interview: this leaves 86.4% of the group remaining before one month had passed.


6.5.3 Data Visualization

We'll produce a Time-to-Event plot by inverting the probabilities reported in estimate and its accompanying confidence interval.³⁷ This plot uses geom_step to draw a step-wise function, and geom_rect to create a shaded confidence interval for each step.

In general, we see evidence that non-users with unmet need at Phase 1 were significantly quicker to adopt a method compared to women with no unmet need in each country.

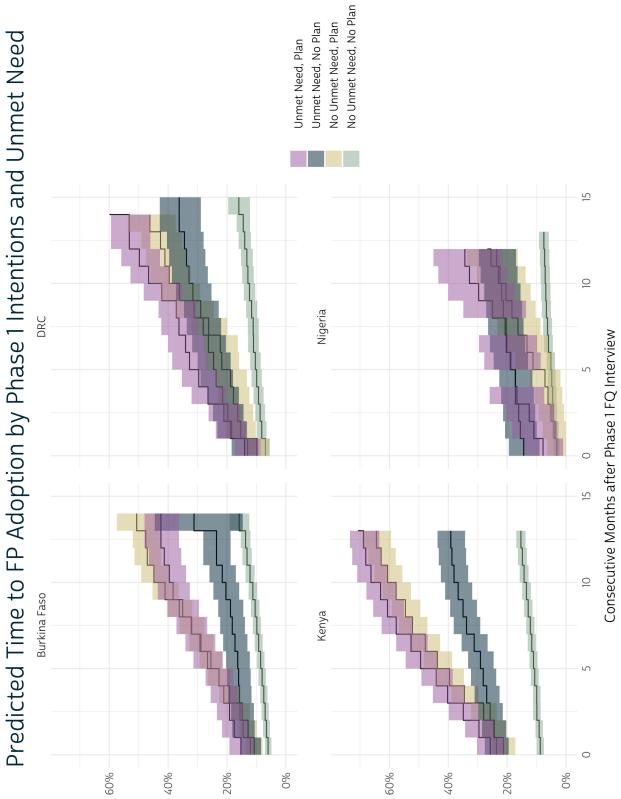
```
adopt models %>%
 unnest(unmet) %>%
 group by(COUNTRY, strata) %>%
 mutate(
   strata = if_else(strata %>% str_detect("TRUE"), "Unmet Need", "No Unmet Need"),
   across(where(is.double) & !time, ~1-.x),
   xmax = if_else(time == max(time), time, time + 1) # horizontal ci shading
 ) %>%
 gqplot(aes(x = time, y = estimate, fill = strata)) +
 geom_step() +
 geom_rect(
   aes(xmin = time, xmax = xmax, ymin = conf.low, ymax = conf.high),
   alpha = 0.5, color = 0
 ) +
 facet wrap(~COUNTRY) +
 scale_y_continuous(labels = scales::label_percent()) +
 scale fill manual(values = c("Unmet Need" = "#F2300E", "No Unmet Need" = "#352749")) +
 labs(
   title = "Predicted Time to FP Adoption by Phase 1 Unmet Need Status",
   x = "Consecutive Months after Phase 1 E0 Interview"
 ) +
 theme pma
```


³⁷The so-called "Time-to-Event" plot is an inverted case the **Kaplan Meier** curve, depicting increased risk over time rather than decreased survival. The same survival function can be used to produce either plot.

Let's now consider how the adoption rate might be influenced to by FPPLANYR_1.

Here, we see that women who planned to adopt a method within 1 year following the Phase 1 interview were significantly quicker to begin using one compared to women who had no such plans (except within the first few months for women in Nigeria, where this difference was not statistically significant).

```
adopt models %>%
 unnest(plan) %>%
 group by(COUNTRY, strata) %>%
 mutate(
   strata = if_else(strata %>% str_detect("TRUE"), "Plan", "No Plan"),
   across(where(is.double) & !time, ~1-.x),
   xmax = if_else(time == max(time), time, time + 1) # horizontal ci shading
 ) %>%
 ggplot(aes(x = time, y = estimate, fill = strata)) +
 geom_step() +
 geom_rect(
   aes(xmin = time, xmax = xmax, ymin = conf.low, ymax = conf.high),
   alpha = 0.5, color = 0
 ) +
 facet_wrap(~COUNTRY) +
 scale_y_continuous(labels = scales::label_percent()) +
 scale fill manual(values = c("Plan" = "#EBCC2A", "No Plan" = "#899DA4")) +
 labs(
   title = "Predicted Time to FP Adoption by Intentions Within 1 Year of Phase 1",
   x = "Consecutive Months after Phase 1 FQ Interview"
 ) +
 theme pma
```



Plan No Plan

Finally, let's consider the interaction reported in INTERACT_1.

The interaction between UNMETYN_1 and FPPLANYR_1 seems to confirm at least one of our hypotheses: non-users who had no unmet need and no plans to adopt a method within the year were significantly slower to do so (again, except for the first few months shown in Nigeria). Women without plans to adopt a method were also somewhat slower to adopt a method if they experienced unmet need, but there are considerable differences in the strength of this finding across countries and over the length of the calendar period. Overall, women who planned to adopt a method were significantly quicker to do so, but the mitigating effects of unmet need are generally unclear.

```
adopt models %>%
 unnest(interact) %>%
 group by(COUNTRY, strata) %>%
 mutate(
   strata = str_remove(strata, ".*="),
   across(where(is.double) & !time, ~1-.x),
   xmax = if_else(time == max(time), time, time + 1) # horizontal ci shading
 ) %>%
 ggplot(aes(x = time, y = estimate, fill = strata)) +
 geom_step() +
 geom rect(
   aes(xmin = time, xmax = xmax, ymin = conf.low, ymax = conf.high),
   alpha = 0.5,
   color = 0
 ) +
 facet wrap(~COUNTRY) +
 scale y continuous(labels = scales::label percent()) +
 scale_fill_manual(values = c(
   "Unmet Need, Plan" = "#98579B",
   "Unmet Need, No Plan" = "#00263A",
   "No Unmet Need, Plan" = "#CCBA72",
   "No Unmet Need, No Plan" = "#81A88D"
 )) +
 labs(
   title = "Predicted Time to FP Adoption by Phase 1 Intentions and Unmet Need",
   x = "Consecutive Months after Phase 1 FQ Interview"
 ) +
 theme pma
```

